

Exploring How Model Oriented Programming Can Be

Extended to the User Interface Level

By

Julian Solano

Thesis

Presented to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the

requirements for the degree Master in Systems Science

University of Ottawa

Ottawa, Ontario, K1N 6N5

Canada

ii

Acknowledgements

I would like to extend a great thank you to the following people:

1. Dr. Timothy C. Lethbridge. As my advisor, supervisor and mentor he introduced me

to textual modeling, code generation techniques, UI generation, and other

interesting topics and research lines, which gave me the ideas to do this thesis. His

advice, critique and guidance through this process have been extensive and

invaluable.

2. The CRuiSE lab team composing of Dr. Lethbridge, Andrew Forward and Omar

Badreddin. Their support on Umple topics was definitive to finish this thesis.

3. Dusan Brestovansky, for his original research in Umple.

4. My family Ricardo, Xiomara, Jennifer and Rudolf. Who have supported me in

many ways through this long journey.

5. Beatriz, my girlfriend, for her support during these long weeks of researching and

programming.

iii

Table of Contents

LIST OF FIGURES .. V

LIST OF TABLES .. VII

1 INTRODUCTION .. 1

1.1 MOTIVATION AND OBJECTIVES .. 1
1.2 AUDIENCE ... 6
1.3 ORGANIZATION ... 7

2 BACKGROUND ... 9

2.1 THE UMPLE LANGUAGE .. 9
2.1.1 Namespaces and classes ... 10
2.1.2 Attributes .. 10
2.1.3 Associations... 11
2.1.4 Other features ... 12

2.2 SUBSET OF UMPLE SUPPORTED BY UIGU ... 13
2.2.1 Effective CRUD implementation .. 13
2.2.2 The Subset of Umple Attribute Keywords to be Supported .. 14
2.2.3 Umple association subset ... 17
2.2.4 Design Patterns generated by Umple ... 19
2.2.5 Class hierarchies .. 19

2.3 THE UMPLE METAMODEL ... 20
2.4 CODE GENERATION MODELS .. 21

2.4.1 Munging ... 21
2.4.2 Inline code expanders... 22
2.4.3 Mixed code generation ... 22
2.4.4 Partial-class generation and Multi-tier Generation .. 23
2.4.5 Compilers ... 24

2.5 CODE GENERATORS AND INPUT FILES .. 25
2.5.1 Database based UI code generators .. 25
2.5.2 Reflection-based UI code generators ... 26
2.5.3 XML/XSL based UI generators .. 27
2.5.4 Templates .. 29

2.6 DESIGN PATTERNS ... 30
2.6.1 Model View Controller ... 31
2.6.2 Data Access Object (DAO) ... 32
2.6.3 Abstract Factory ... 34

2.7 UI FRAMEWORKS .. 35
2.7.1 Java Server Faces (JSF) .. 36
2.7.2 Java FX .. 38

3 RESEARCH QUESTIONS .. 40

3.1 FROM THE MODEL TO THE UI .. 40
3.2 THE UMPLE ABSTRACT SEMANTIC GRAPH AS AN INPUT ... 41
3.3 GENERATION SCOPE .. 41
3.4 USEFULNESS ... 41
3.5 MULTI-UI GENERATION ... 42

4 THE UIGU GENERATOR .. 43

4.1 UIGU KEY CONCEPTS ... 46
4.1.1 CRUD intermediate steps ... 47

iv

4.1.2 Fragments .. 48
4.1.3 Generation Unit ... 48
4.1.4 GUI properties ... 49
4.1.5 Support files ... 49
4.1.6 Umple Project .. 49

4.2 UIGU DESIGN ASPECTS ... 49
4.3 UIGU ARCHITECTURE .. 52

4.3.1 GUIModel .. 52
4.3.2 GUIGenerator .. 65
4.3.3 JSF Provider .. 70
4.3.4 UIGU Generation Proccess ... 88
4.3.5 Architecture of the generated application .. 88

5 USING UIGU .. 92

5.1 USING UIGU‘S GENERATOR ... 92
5.1.1 Configuring UIGU ... 93
5.1.2 Running UIGU ... 96
5.1.3 Compiling UIGU .. 97

5.2 USING THE GENERATED APPLICATION .. 98
5.2.1 Deploying the generated application ... 99
5.2.2 Using the JSF web application ... 99
5.2.3 Other features .. 111

6 EXTENDING UIGU .. 115

6.1 UIPROVIDER CLASSES .. 116
6.2 FRAGMENTS ... 117
6.3 MAIN TEMPLATES .. 118
6.4 NAVIGATION MODEL ... 120
6.5 RUNNING THE JFXPROVIDER. ... 122
6.6 CURRENT STATE .. 123

7 CONCLUSIONS ... 124

7.1 RESEARCH QUESTIONS ... 124
7.2 CONTRIBUTIONS ... 128
7.3 FUTURE WORK AND POSSIBILITIES .. 129

7.3.1 Expanding UIGU ... 129
7.4 VALIDATING UIGU ... 130

REFERENCES ... 131

APPENDIX I ... 134

UMPLE GRAMMAR V. 1.6.3 ... 134

APPENDIX II ... 137

UMPLEPROJECT.XSD ... 137

APPENDIX III .. 139

EXAMPLES .. 139
School – Person Model ... 139
Insurance System. ... 139
Airline System ... 141

APPENDIX IV .. 143

UMPLEPROJECT.XML FOR THE INSURANCE_SYSTEM .. 143

v

List of Figures

FIGURE 1. BASIC EXAMPLE SYSTEM .. 3
FIGURE 2. UMPLE CODE WHICH RESULTED IN THE CLASS DIAGRAM IN FIGURE 1. .. 3
FIGURE 3. PERSON UI, GENERATED FROM THE UMPLE CODE, CREATE (LEFT) AND UPDATE (RIGHT) ... 4
FIGURE 4. GENERATED FILES FOR THE PERSON CLASS .. 6
FIGURE 5. CLASS AND NAMESPACE DECLARATION IN A PARENT CHILD HIERARCHY .. 10
FIGURE 6. ATTRIBUTE MODIFIERS. ... 11
FIGURE 7. ASSOCIATION DECLARATION IN UMPLE (LEFT), FRAGMENT OF JAVA GENERATED CODE (RIGHT) 12
FIGURE 8. STYLES TO DECLARE ASSOCIATIONS. NOTE THE USE OF THE ARROW (->) TO INDICATE DIRECTION, THE DOTS (..) TO

DECLARE MULTIPLICITIES AND THE ROLE NAMES (IN THIS CASE PROFESSORS). .. 18
FIGURE 9. EXPLICIT (LEFT) AND IMPLICIT (RIGHT) PARENT-CHILD DECLARATION .. 19
FIGURE 10. UMPLE CORE METAMODEL .. 20
FIGURE 11. CODE MUNGING MODEL .. 21
FIGURE 12. INLINE CODE EXPANDER MODEL .. 22
FIGURE 13. MIXED CODE GENERATOR MODEL ... 23
FIGURE 14. MULTI-TIER/PARTIAL CLASS GENERATOR MODEL .. 24
FIGURE 15. DAO PATTERN, CLASS DIAGRAM ... 33
FIGURE 16. DAO + ABSTRACTFACTORY, CLASS DIAGRAM .. 35
FIGURE 17. THE ASSOCIATION PROBLEM. UMPLE CODE (LEFT), JAVA GENERATED CODE (RIGHT) .. 44
FIGURE 18. UIGU INPUTS. TRY 1: UMPLE GENERATED JAVA CLASSES. TRY 2: INSTANCES OF THE UMPLE METAMODEL (ABSTRACT

SEMANTIC GRAPH) ... 46
FIGURE 19. UIGU HIGH LEVEL ARCHITECTURE ... 52
FIGURE 20. GUIMODEL CLASS DIAGRAM ... 54
FIGURE 21. EXAMPLE OF THE XML CONFIGURATOR FOR CONTROLLER FRAGMENTS ... 62
FIGURE 22. EXAMPLE OF THE XML CONFIGURATOR FOR VIEW FRAGMENTS ... 62
FIGURE 23. GUIGENERATOR'S CLASS DIAGRAM ... 67
FIGURE 24. GENERATED DAO CLASS DIAGRAM AND UMPLE MODEL (UPPER LEFT CORNER). ... 68
FIGURE 25. JSFPROVIDER’S CLASS DIAGRAM .. 70
FIGURE 26. UMPLEPROJECT.XML, DECLARING THE ATTRIBUTE CONFIGURATOR XML FILES. .. 71
FIGURE 27. IGENERATOR SKELETON (LEFT), SKELETON DECLARATION (RIGHT) .. 72
FIGURE 28. UMPLE MODEL SHOWING SETTABLE ATTRIBUTES ... 74
FIGURE 29. CALLING THE FRAGMENT PROVIDER TO GET A CREATE FRAGMENT .. 74
FIGURE 30. GENERATED UI FOR DEFAULTED ATTRIBUTES. TEMPLATE FRAGMENT (LEFT). GENERATED UI (RIGHT) 76
FIGURE 31. GENERATED UI COMPONENTS FOR KEY ATTRIBUTES. CREATE (LEFT) AND UPDATE (RIGHT) OPERATIONS................... 76
FIGURE 32. GENERATED UI FOR THE SCHOOL -- PERSON MODEL DEPICTED IN FIGURE 24. ... 78
FIGURE 33.GETTING A CONTROLLER FRAGMENT; ATTVAR IS AN ATRIBUTEVARIABLE. ... 80
FIGURE 34. FACES-CONFIG.XML'S NAVIGATION RULES DECLARED IN THE SCHOOL--PERSON MODEL .. 84
FIGURE 35. SAMPLE NAVIGATION MODEL FOR THE PERSON -- SCHOOL MODEL. ... 87
FIGURE 36. MVC RESPONSABILITIES .. 88
FIGURE 37. UIGU GENERATION PROCESS ... 89
FIGURE 38. SCHOOL -- PERSON MODEL. GENERATED APPLICATION'S CLASS DIAGRAM ... 90
FIGURE 39. INSURANCE SYSTEM MODEL .. 92
FIGURE 40. FILES SECTION FRAGMENT. .. 95
FIGURE 41. INSURANCE SYSTEM REQUIRED FILES .. 95
FIGURE 42. RUNNING UIGU. JAVA COMMAND USING THE VALUES DECLARED IN THE XML FILE(TOP), JAVA COMMAND OVERWRITING

vi

ATTRIBUTES (MIDDLE), PARTIAL CONSOLE'S OUTPUT (BOTTOM) ... 96
FIGURE 43. RUNNING UIGU. ANT COMMAND (TOP), RESULTING FILES AND FOLDERS (BOTTOM)... 98
FIGURE 44. INSURANCE SYSTEM CLASS DIAGRAM ... 100
FIGURE 45. INSURANCE SYSTEM NAVIGATION MENU .. 101
FIGURE 46. LIFEINSURANCEPOLICY FORM .. 101
FIGURE 47. INPUT COMPONENTS. 1) TEXTBOX FOR STRING, INTEGER AND DOUBLE ATTRIBUTES, 2) CALENDAR FOR DATE

ATTRIBUTES. 3) COMBO BOXES FOR TIME ATTRIBUTES ... 102
FIGURE 48. ASSOCIATION PANEL FOR SINGLE SELECTIONS .. 103
FIGURE 49. FORM COMPONENTS FOR SINGLE ASSOCIATIONS. BEFORE (LEFT) AND AFTER (RIGHT) .. 104
FIGURE 50. ASSOCIATION PANEL FOR MULTIPLE SELECTIONS ... 104
FIGURE 51. FORM COMPONENTS FOR MULTIPLE ASSOCIATIONS. BEFORE (LEFT) AND AFTER (RIGHT) 105
FIGURE 52. PERSON CRUD. CREATE (LEFT),UPDATE (RIGHT) ... 106
FIGURE 53. ASSOCIATION PANEL FOR THE “INSURANCEPOLICY * -- 1 PERSON HOLDER” .. 106
FIGURE 54. ASSOCIATION PANEL LAUNCHING AN ASSOCIATION PANEL... 107
FIGURE 55. INSUREDPROPERTY GENERATED GRID. NOTE THAT THE DELETE ACTION IS ONLY AVAILABLE FOR THE ROW WITH

INSUREDPROPERTY TYPE .. 108
FIGURE 56. PAGER COMPONENT .. 108
FIGURE 57. GENERATED VALIDATION MESSAGE. ... 109
FIGURE 58 . SINGLETON. INSURANCECOMPANY VIEW ... 110
FIGURE 59. FORM COMPONENTS TO ASSOCIATE SINGLETONS. MANDATORY (LEFT), OPTIONAL NOT SELECTED (MIDDLE), OPTIONAL

SELECTED (RIGHT) .. 110
FIGURE 60. COLUMN REPRESENTATION OF AN ASSOCIATION TO A SINGLETON. ... 110
FIGURE 61. TRANSACTION (LEFT) AND RENEWAL (RIGHT) CRUDS. NOTE THAT WHILE THE TRANSACTION GRID SHOWS BOTH

TRANSACTION AND RENEWAL TYPES, THE RENEWAL GRID ONLY SHOWS RENEWAL TYPES .. 111
FIGURE 62. INVALIDATE SESSION BUTTON ... 112
FIGURE 63. RESOURCE BUNDLE FOR THE VEHICLE CLASS .. 112
FIGURE 64. DIFFERENT SKINS FOR THE RENEWAL CRUD. 1) WINE, 2) CLASSIC, 3) JAPANCHERRY, 4) RUBY. NOTE THE SKIN COMBO

IN THE UPPER-RIGHT CORNER. .. 113
FIGURE 65. SCHOOL -- PERSON MODEL ... 116
FIGURE 66. SCHOOL CRUD. JAVAFX (LEFT), JSF (RIGHT) .. 120
FIGURE 67. PERSON CRUD. JAVAFX (LEFT), JSF (RIGHT) .. 121
FIGURE 68. LINKING A STUDENT (PERSON) TO AN SCHOOL. JAVAFX (LEFT), JSF (RIGHT) .. 121
FIGURE 69. ADDING STUDENTS (PERSON) TO A SCHOOL. JAVAFX (LEFT), JSF (RIGHT) ... 122
FIGURE 70. JFXPROVIDER EXECUTABLE FILES .. 123

vii

List of Tables

TABLE 1. PERSON UI'S METRICS ... 4
TABLE 2. UIGU SUPPORTED INITIALIZATION FOR JAVA CODE GENERATED BY UMPLE .. 16
TABLE 3.BACKING BEANS SCOPE ... 37
TABLE 4. JSF MODELS .. 38
TABLE 5. UIPROVIDER'S METHODS FOR CONTROLLER FRAGMENTS ... 53
TABLE 6. UIPROVIDER'S METHODS FOR VIEW FRAGMENTS ... 55
TABLE 7. UMPLEPROJECT TAG .. 56
TABLE 8. PROPERTY TAG .. 57
TABLE 9. GENERATIONUNIT XML TAG ... 58
TABLE 10. PARAMETERTYPE'S ACCEPTED VALUES ... 59
TABLE 11. DIRECTORY TAG .. 60
TABLE 12. FILE TAG .. 60
TABLE 13. BACKINGOBJECT'S IMPORTANT METHODS .. 64
TABLE 14. ASSOCIATION CLASSIFICATION .. 65
TABLE 15. TEMPLATE FRAGMENTS AND GENERATED UI COMPONENTS FOR THE MODEL LISTED ON FIGURE 28 (SETTABLE

ATTRIBUTES) ... 75
TABLE 16. CLASSIFICATION OF ASSOCIATIONS AND GENERATED UI. .. 77
TABLE 17. CONTROLLER FRAGMENTS FOR A SETTABLE BOOLEAN ATTRIBUTE. ATTVAR IS AN ATTRIBUTEVARIABLE INSTANCE 80
TABLE 18. GUI MAIN TEMPLATES .. 82
TABLE 19. CONTROLLER MAIN TEMPLATES .. 83
TABLE 20. INSURANCE SYSTEM SPECIFIC VALUES .. 95
TABLE 21. ANT TASKS ... 97
TABLE 22. GENERATED APPLICATION'S ICONS .. 102
TABLE 23. SETTABLE STRING CONTROLLER FRAGMENT AND THE GENERATED OUTPUT FOR THE SCHOOL'S NAME ATTRIBUTE 117
TABLE 24. VIEW FRAGMENTS FOR THE SCHOOL'S NAME ATTRIBUTE. NOTE THAT THE CREATE FRAGMENT ALSO HANDLES DEFAULT

VALUES .. 118
TABLE 25. JFXPROVIDER MAIN TEMPLATES ... 119

viii

Abstract

The purpose of our research is to explore the alternatives to extend well-defined UML

models to the application level, and more specifically to the user interface level. For the

novice software modeler (and sometimes for more advanced modelers) there is a gap

between how the model looks and how the final product should look. In addition, the

implications of some design decisions might not be easy to analyze without strategies like

story boards, prototyping, etc.

A cornerstone of our work is the use of the text-based modeling language Umple (UML

Programming Language) and its metamodel as input. Umple has a similar syntax to Java,

but is enhanced with additional modeling constructs (associations, software patterns, etc.).

In this way our target was the creation of an application generator engine capable of

interpreting a subset of the Umple language to produce complete working applications, by

providing a translation into existing object-oriented programming languages and their user

interface technologies. Using this engine, the software modeler can create working

prototypes "on the fly" to help him to validate the correctness of the designed model. Once

the model is validated the generated prototypes can be customized and extended by the

application developer to produce the final product.

ix

Abbreviations

AJAX: Asynchronous JavaScript and XML

API: Application Programming Interface

CRUD: Create, Read, Update and Delete

DAO: Data Access Objects

DBMS: Database Management System

JAXB: Java API xml Binding

JET: Java Emitter Templates

JSF: Java Server Faces

JSP: Java Server Paged

OO: Object Oriented

PHP: Hypertext Preprocessor

MVC: Model View Controller

RIA: Rich Internet Application

SQL: Structured Query Language

UI: User Interface

UIGU: User Interface Generator for Umple

UML: Universal Modeling Language

XHTML: Extensible Hypertext Markup Language

XML: Extensible Markup Language

XSD: XML Schema

XSL: Extensible Stylesheet Language

XSLT: XSL Transformations

1

1 Introduction

The purpose of this research is to explore how to extend model-oriented programming to

the user interface level. This is part of a larger project whose goal is to examine the

advantages and disadvantages of forward engineering using text-based models, as

compared to traditional diagram-oriented modeling tools and techniques.

As a major part of the work, we developed a template-based code generator for the Umple

language which we call User Interface Generator for Umple (UIGU). Just like Umple, the

generator can be used to generate object-oriented programs (such as Java programs);

however Umple only generates an API, whereas UIGU generates a complete prototype

system.

1.1 Motivation and Objectives

User interface development has concerns in both the modeling and implementing phases.

In many software development processes, UML is used extensively in the modeling (or

equivalent) phase, although user interfaces represent an essential part of software systems,

the Unified Modeling Language seems to have been developed with little specific attention

given to user interface issues. UML is used to model important aspects of user interfaces,

but this often results in unwieldy and unnatural representations for interface modeling [1].

If the modeler can go from the model to either a working prototype or a close

2

approximation of the application, with a minimum effort, the modeler can see the

implications of his design decisions, evaluate alternatives and validate his designs.

Implementing user interfaces (UIs) is time consuming and costly. In applications with

graphical user interfaces, nearly 50% of source code lines and development time are spent

developing the UI [2]. However, the UI layer is composed from a fixed number of building

blocks making its development repetitive. Many design patterns for Object Oriented

Languages (Model View Presenter -MVP-, Model View Controller -MVC-, Front

Controller, etc.) divide the different components of the UI layer into simpler and more

understandable pieces. This division strategy results in the creation of many small objects;

most of them sharing similar structure and responsibilities [3]. Hence, UI construction is a

natural target for automation. A direct consequence of the amount of effort required to

create the UI layer is that most of the bugs are also located in the UI code. In this thesis our

main objective is to automatically generate a default user interface with appropriate quality

to interactively validate the system's intended functionality, with minimum implementation

effort.

The Umple language is an attempt to fill the gap between these two separate phases in the

development lifecycle: modeling and implementing [4]. Umple uses the concept of textual

modeling as a technique to reduce the differences between the model and the code. With

Umple it is possible to generate domain objects
1
 from textual models. Our premise is that

the textual model and the Umple metamodel are all that we need to create a default UI

1
 For a definition of "Domain object" see [5]

3

Interface to interact with those domains objects. When we talk about interaction we are

limiting our attention to actions create, update and delete (CRUD).

 To elaborate on the points made so far, let us introduce a trivial example. We will show the

very small amount of code required to create a simple user interface. The example will also

introduce some of the syntax of the Umple language. Figure 1, shows the Person class'

UML diagram

Figure 2, shows the equivalent Umple code (textual model) code which resulted in this

generated UML Class diagram
2
.

Figure 3, shows the generated UI interface, for the create and update actions. Note the

representation of the dateOfBirth attribute in the update action due the immutable

keyword. This interface was generated following the Java Server Faces technology (JSF)

2
 This UML diagram was created using the UMPLEOnline tool by A. Forward and T. Lethbridge.

http://cruise.site.uottawa.ca/umpleonline/

namespace human;

class Person{

String name;

String address;

immutable Date dateOfBirth;

}

Figure 1. Basic example system

Figure 2. Umple code which resulted in the Class diagram in Figure 1.

http://cruise.site.uottawa.ca/umpleonline/

4

by Sun Microsystems

To give an idea of the effort required to build this simple CRUD, let us analyze the required

files and the number of lines of code. Since each UI technology requires different files and

programming structures, this analysis is not intended to be complete nor conclusive, but can

give us a preview of the usefulness of the UIGU.

Metric Value

Java Files 13

xhtml (view) files 5

Configuration Files 2

Total Files 20

Lines of Java code 394

Lines of xhtml code 174

Total lines of Code 568

Table 1. Person UI's Metrics

Figure 3. Person UI, generated from the Umple code, create (left) and update (right)

5

Table 1, shows that 5 lines of Umple code, result in 568 lines of code distributed in domain

objects, Java presentation related objects and xhtml pages. Details of all that is generated

will be discussed further in the thesis. Figure 4, shows the generated files.

Since Umple is an effort to unify programming and modeling, and given Umple‘s ability to

generate system code [4], adding an extra layer to generate UI code will help to keep the

user focused on the modeling task, while both Umple and UIGU keep the domain objects

and the UI-related objects (UI objects) and artifacts synchronized.

We hypothesize that our generator in combination with Umple will reduce the time it takes

to perform the following software activities:

 Develop. Development time should be greatly reduced because once the Umple

language is mastered, going from the model to a working prototype should take

little time. As the example shows, it is clear that writing and understanding 5 lines

of code takes much less time than to do the same with 564 lines of code.

Furthermore, moving from the generated UI (generated prototype) to a complete

application should be easy due to the adoption of appropriate design patterns in the

generated code, allowing the customization and extension of the objects and

artifacts.

 Inspect. Since Umple code is both concise and rooted in UML, and the generated

UI is an interpretation of that code, code inspection should become much easier.

Each object in the Umple code has its own set of objects in the UI generated code.

6

 Maintain. Due to the model-code duality of Umple systems, maintenance also

should become much easier. Each change in the system will be reflected (by re-

generation) in the Umple-generated code and thereby in the UI generated code.

1.2 Audience

This thesis has been developed to expand the utility of the Umple language, so its audience

is similar to Umple‘s audience. Therefore, the target audience of this research is individuals

working in modeling, implementation, or maintenance of software systems, and also

Figure 4. Generated files for the Person class

7

students of software modeling courses who will find in UIGU a quick way to see how their

designs will look and behave in an implemented system.

 Users are expected to have some experience with object oriented (OO) programming, and

UI technologies/frameworks in order to create or modify a specific UI provider (concrete

UI generator).

1.3 Organization

This thesis begins with a review of the background required to understand the main topics

of our research in Chapter 2. The background review includes Umple, code generation

models, UI Generation, UI Frameworks and certain design patterns.

The background discussion also includes a review of CRUD applications and the minimum

requirements that a CRUD application should fulfill. After reviewing these requirements,

we present the Umple subset supported by UIGU.

Chapter 3 will formally introduce the research questions explored within this thesis. The

answers to these questions are offered in Chapter 7.

We discuss the UIGU solution and provide a complete explanation of the different UIGU

components in Chapter 4. In this chapter, we present the concept of UIProvider, and the

JSFProvider is used to show a concrete implementation of that concept. Details about how

8

UIGU can be used are provided in Chapter 5. Chapter 6 describes another UIProvider (the

JFXProvider) to show how UIGU can be extended.

The last chapter, Chapter 7, provides answers to the research questions stated in Chapter 3,

and lists some valuable ideas to improve UIGU.

9

2 Background

In this chapter we present background research on four main topics: Umple, UI Generation,

UI Frameworks and certain design patterns. The first topic is the Umple language, its

features and the subset of Umple to be supported by the UI generator. The second deals

with the different generation approaches and which approach would work best with the

Umple language, keeping Umple‘s feature of generating system code for different

programming languages. The next section describes which UI frameworks can be used as a

generation target, that is, to which UI technologies the Umple-generated domain objects

would be linked. The final section discusses design patterns that are relevant to this work.

2.1 The Umple Language

The Umple language
3
 is both a text-based modeling language and a programming language

with modeling capabilities. It adds concepts from UML to object-oriented languages like

Java and PHP.

Umple takes care of generating essential target-language
4
 code needed to implement high-

level UML concepts such as attributes and associations, generating all the ―boilerplate‖

code (code which is necessary in a program to implement a concept and is repeated many

times) behind the modeling abstractions. This includes the methods needed to set and get

3 For a complete Umple reference see [4]
4
 Examples in JAVA and PHP are available at http://cruise.site.uottawa.ca/umpleonline/

http://cruise.site.uottawa.ca/umpleonline/

10

attributes as well as to add and delete links of associations; code is also created for some

design patterns like Singleton. The next few sections provide an overview of the central

aspects of the Umple language.

2.1.1 Namespaces and classes

The notion of namespace is equivalent to the concept of package in Java. That is, by using

the keyword namespace, the modeler can group related classes and provide access

protection to the group's classes (or types).

Umple classes are translated into classes in the OO target language (direct mapping). In

Umple, constructors are not explicitly declared, however Umple generates the target

language's constructor method based on the attribute modifiers, association multiplicities,

class hierarchy and other special keywords (singleton, key, etc.). Class hierarchies are

declared using the isA keyword in accordance with the is-A test [4]. Figure 5, shows a class

hierarchy declaration in Umple with two example attribute declarations.

Figure 5. Class and namespace declaration in a parent child hierarchy

2.1.2 Attributes

UMPLE translates an attribute declaration to a private instance variable and the standard

namespace human;

class Person {

 name;

}

class Student {

 isA Person;

 Integer number;

}

11

get and set methods, where appropriate. Umple also generates code which checks certain

conditions based on attribute modifiers. Figure 6 shows an Umple model using some of

these modifiers.

Figure 6. Attribute modifiers.

By using attributes, the user can change the attribute implementation. For example, an

immutable attribute will allow setting the attribute value only at creation time but not

through a set method. In the simplest case each Umple attribute is mapped to a single

instance variable in the target language, but in more advanced cases (i.e. defaulted

attributes), Umple provides a set of methods that check that modification is done

appropriately.

2.1.3 Associations

Most of the power of Umple comes from the way it handles associations between classes

[4]. This is because classic OO languages do not offer a standard construct to support the

association concept. More recent languages like Ruby have started to recognize the

concept, but not to its full extent.

Umple maps all associations attributes like multiplicity (0, 0..1, n, *, etc), role names, and

namespace human;

class Person{

 internal id;

 String name;

 String address;

 defaulted Boolean

 isMember=true;

 settable Integer age;

 immutable Date dateOfBirth;

}

12

navigability, into system code (e.g. Java) adding also methods to maintain the association

links, allowing deletion, addition, listing, and other utility methods. Figure 7, shows an

association example and the generated Java code (Appendix I shows Umple grammar).

namespace Airline;

class Airline{

 String name;

 1 -- * RegularFlight;

}

class RegularFlight{

 Time time;

 Integer flightNumber;

}

 public class Airline {

 private List<RegularFlight> regularFlights;

 …

 public List<RegularFlight> getRegularFlights() {

 return Collections.unmodifiableList(regularFlights);

 }

 public int indexOfRegularFlight(RegularFlight aRegularFlight)

 {

 return regularFlights.indexOf(aRegularFlight);

 }

 public RegularFlight addRegularFlight(Time aTime, int

aFlightNumber)

 {

 return new RegularFlight(aTime, aFlightNumber, this);

 }

...

 public void delete()

 {

 for(RegularFlight aRegularFlight : regularFlights)

 {

 aRegularFlight.delete();

 }

 }

...

Figure 7. Association declaration in Umple (left), fragment of Java generated Code (right)

2.1.4 Other features

Umple contains other interesting features to provide ―out of the box‖ implementations of

common software constructions. The singleton keyword allows the declaration of singleton

types (only one object of the class is instantiated at runtime). Attributes can be declared to

maintain a state controlled by a state machine with transitions, guards, and actions. The key

declaration provides identifiers to determine if two instances are logically equivalent.

13

Ordinary methods are written in Umple in a form that is essentially identical to how they

would appear in Java (or PHP). However these methods contain certain restrictions; most

importantly they can access the instance variables representing associations and attributes

only through the generated methods, not directly.

2.2 Subset of Umple Supported by UIGU

This thesis focuses on how textual models can be extended to the UI level, that is using

both Umple models and the Umple metamodel, how a default user Interface and basic

actions can be generated. This work is primarily done as a proof of concept, and the

research is focused on the most common set of user related actions, which are the CRUD
5

(create, read, update and delete) actions. In the conclusions, we talk about ways to extend

UIGU to support more advanced actions. Before talking about the selected subset we have

to determine what are the minimum features required to create CRUD applications.

2.2.1 Effective CRUD implementation

In its origin, CRUD was the most common acronym used to describe the basic set of

actions provided by a relational database system [6]. But today the term is extended to

many other persistent technologies, like xml databases, indexed files, object databases, etc.

Usually CRUD implies the capability to only store data in one table or entity, but in our

case the concept is extended to also allow the interaction with associations.

5
 Others acronyms to denominate those actions are ABCD: add, browse, change, delete; ACID: add, change,

inquire, delete; etc.

14

Any effective CRUD implementation in an object-oriented system must allow:

 Create: Create the required entity in the persistent layer (repository); all constraints

(null, max or min, uniqueness, etc.) must be respected, also links of the the 1--n

associations must be linked here, either for creation (create an instance of the the

associated class) or selection (choose an instance of the associated class).

 Read: An effective CRUD should allow at least two selection methods: retrieve one

instance using a unique key or the entity itself, and retrieve all instances of the same

class.

 Update: Associations and non-immutable attributes could be updated here; the

update technique (update only the modified fields or delete and create a new

instance) is an implementation decision. As in the create action, all constraints must

be respected.

 Delete: This action takes care of the physical (destruction) or logical (deactivation)

elimination of an object or a group of objects. In an object-oriented system all

associations (and their multiplicities) must be respected either by allowing cascade

deletion or through the validation of the delete conditions.

2.2.2 The Subset of Umple Attribute Keywords to be Supported

As stated in Section 2.2.2, Umple translates each attribute into an instance variable. In any

strongly typed object-oriented language, instance variables must have a type [7] (the class

of objects that the variable can contain) and also they could have an access modifier, and an

initial value, in Umple the initialized value follows the semantics of the target language [8].

15

Since Umple has a similar syntax to Java, it is natural that the selected types are similar to

Java types. The initial set of types is:

 Boolean: This type only supports two values: true or false, so as to allow for simple

flag checks and Boolean-related operations.

 Integer: Implemented to allow the declaration of integer numbers.

 Double: Added to support floating-point numbers, the decimal separator is the dot

(.)

 String: Implemented to allow the declaration of chains of characters, when no type

is specified, this type is the default type used in the generated code.

 Date: Added to allow the declaration of dates.

 Time: Added to support time attributes in a 24h format.

Others types were omitted in this generator because they can be handled by the types

described above (i.e. char by String, Float by Double, etc.).

UIGU also supports Umple‘s initialized attributes; Table 2 shows the supported

initialization code when Java is the target language.

Umple provides ―out of the box‖ encapsulation [8] that is, all attributes are private and the

accessor (get) and mutator methods are public, implying that there are no access modifiers

16

in Umple strictly speaking. However Umple generates code to control the interaction

between the user (in our case the UIGU generated interface) and the attributes. To provide

such functionality, Umple uses a set of attribute modifiers. Basically those modifiers alter

the initialization logic, update behavior, and visibility.

Type Code Pattern

Boolean =new Boolean(true);

=true;

Integer =new Integer(5);

=5;

Double =new Double(5.2);

=5.2;

String = ―ABCDE‖

=new String(―ABCDE‖)

Date ="2001-08-11" yyyy-MM-dd

Time ="12:44:00" hh:mm:ss

Table 2. UIGU supported initialization for Java code generated by Umple

Types and initial values are central aspects of the Create and Update actions in a CRUD

application, since instance variables are not used in arbitrary ways, Umple introduced those

modifiers to abstract some recurrent patterns regarding instance variables‘ intentions [9].

The following list contains the initial set of modifiers supported by UIGU, each modifier

was chosen taking in account its importance in the related CRUD actions.

 none: No modifier at all. If no initial value is specified, the attribute value is

assigned in the constructor; otherwise the attribute value is assigned to the specified

initial value. The attribute can be created as null. The attribute can be updated to any

value including null. Impact: Create and Update.

17

 settable: Same as none. Impact: Create and Update.

 immutable: if no initialization, the attribute value is assigned in the constructor, also

the attribute can be created as null; otherwise the attribute value is assigned to the

initial value. The attribute cannot be updated. Impact: Create and Update.

 defaulted: The attribute must have an initial value; at creation time the attribute is

assigned to the specified initial value, The attribute can be updated or reset to the

initial (default value). Impact: Create and Update.

 internal: If no initialization, the attribute value is assigned in the constructor;

otherwise, the attribute value is assigned to the initial value. The attribute can be

neither read nor updated after construction. Impact: Create.

 key: This modifier indicates that the attribute is part of the unique key. Uniqueness

of keys is enforced, and an exception is thrown if the uniqueness is violated in an

attempt to instantiate an object. Key implies immutable, key attributes are necessary

to find and store entities in persistence layers. Impact: Read, Delete, Create.

2.2.3 Umple association subset

As commented in Section 2.2.3, Umple provides a way to declare associations as part of the

language. The declared associations can have role names, directionality and multiplicities.

UIGU generates UI code to allow the end user to interact with the declared associations.

Umple provides several styles to declare associations, all of them supported by UIGU;

these styles are:

 Explicit: In this approach the classes are declared first, and then an association

18

structure is declared to indicate the link between them, along with their role names,

direction and multiplicities.

 Implicit: The association and its roles are declared inside of one of the associated

classes, along with their role names, direction and multiplicities.

Figure 8 shows these two declaration styles. In this example the association states that a

school has at least one professor, and each of these professors only belongs to one school.

Figure 8. Styles to declare associations. Note the use of the arrow (->) to indicate direction,

the dots (..) to declare multiplicities and the role names (in this case professors).

The way we declare multiplicities in Umple is very similar to the way we declare them in

UML. UIGU generates validation methods to ensure that boundaries are respected. To

declare that an association is one way only, we simply use the ―->‖ construct instead of

―--―.

Currently, UIGU generates UI code for associations with all the multiplicity combinations,

with the exception of 1--1 associations. This is because the current version of Umple (1.6.3)

does not have a post-creation strategy
6
, and hence, the generated constructors have an

6
 It is a two steps creation process. In the first step the object is created setting only its attribute, in the second

step (post-create), the associations are linked.

class School{}

class Person{}

association {

 1 School --> 1..* Person

 professors;

}

class School{

 1 -> 1..* Person professors;

}

class Person{}

19

interdependency preventing the creation of the objects.

2.2.4 Design Patterns generated by Umple

Umple generates system code for classes marked as singleton; those classes are

implemented following the singleton pattern. This pattern ensures that there is only one

instance of a class at runtime. In Umple, this is declared using an optional expression

―singleton;‖ in the declaration of a class. UIGU generates the UI code to maintain

associations from and to singleton classes.

2.2.5 Class hierarchies

Class hierarchies are central to object oriented programs; to support those hierarchies,

Umple allows two styles to declare such hierarchical relationships. As with the association

declarations the two styles are:

 Explicit: In this approach the child class uses the isA keyword followed by the name

of the parent class

 Implicit: The child class is declared inside the parent class. This style of declarations

should not be confused with the notion of inner classes in OO programming.

Note that Umple supports only single inheritance, like Java and most other OO languages.

Figure 9 shows two equivalent class hierarchies with the different declaration styles.

Figure 9. Explicit (left) and Implicit (right) parent-child declaration

class Person{}

class Professor{

 isA Person;

}

class Person{

 class Professor{}

}

20

UIGU supports any number of levels of hierarchy and both types of declaration.

2.3 The Umple Metamodel

UIGU makes extensive use of the Umple metamodel to generate UI Objects (web pages,

Java Beans, etc), validation routines, persistence layer, and configuration files. Figure 10

shows the Umple core metamodel (version 1.6.3).

Figure 10. Umple core metamodel

21

Figure 11. Code Munging model

UmpleClass is the most important class for IUGU; most of the required information is

located in that class. UIGU uses UmpleClass to read all attribute variables

(AttributeVariable class) their types, modifiers and initialization values. Also all the

association logic can be determined by correlating the attributes located in

AssociationVariable and UmpleAssociation (i.e. the multiplicities are in

AssociationVariable, but the navigability is in UmpleAssociation). More details about how

to go from the metamodel to the UI objects will be discussed in Chapter 4.

2.4 Code generation models

There are many ways to categorize generators. You can differentiate them by their

complexity, by usage, or by their output [10]. Sections 2.4.1 to 2.4.4 are an overview of the

different generator models.

2.4.1 Munging

Munging is a slang for twisting something from one form to another form [10]. Code

mungers are the most simple code generators; given an input, the generator modifies some

aspects of them to create one or more output files. Code mungers make heavy use of

parsing and regular expressions patterns. Figure 11 shows the code munging model.

22

Note that in this model there is no compilation step, special syntax or auxiliary files.

2.4.2 Inline code expanders

In this model the input files contain some special markup that is going to be replaced by the

generator, that is, the generator expands the original source. This implies that the output is

an expanded version of the input. An example of the implementation model is the Java

Server Pages -JSP- technology [11], where the input file is a jsp (or xml) page with special

tags, and the output is an html (or xhtml) page generated after the expansion

(replacement) of those tags. Code expanders are less extendible than code mungers, since

the mere choice of an expandable language reduces their possible uses [12].

2.4.3 Mixed code generation

A mixed code generator reads input file(s) and then modifies and replaces the file(s) in place.

Unlike inline-code expanders, mixed-code generators put the output of the generator back into the

input file(s). This type of generator looks for specially formatted comments, and when it finds them,

fills the comment area with some new source code required for production [10].

Figure 12. Inline code expander model

23

2.4.4 Partial-class generation and Multi-tier Generation

In these models, the input file(s) is (are) basically an abstract definition of the system. The

generator uses templates to create software artifacts (i.e. classes). These generators rarely

provide a graphical language for specification definition; therefore, they usually rely on

database metadata, tabular metadata inputs, properties files, etc., making them non-intuitive

and awkward [12].

The difference between a partial-class generator and a multi-tier generator is the scope.

Both of them apply templates based on the input definition files, but in the partial-class

approach the generator generates base classes to be extended (or derived) by the software

developer to create the production code. Multi-tier generators generate all the required

code for an entire layer or layers in an n-tier system. Partial-class generators can evolve into

multi-tier generators [10].

Figure 13. Mixed code generator model

24

Figure 14. Multi-tier/Partial class generator model

In code munging generators, the output is the result of parsing and query operations (find,

replace, split, regular expressions, etc.) made over the input file; this implies that mungers

are very specific and non flexible code generators. In inline expander and mixed generators,

the output is a refined (or completed) version of the input, that is, the output is essentially

the same kind of document as the input (i.e. in JSP, both the jsp page input and the html

output are both web pages). On the other hand, partial-class and multi-tier generators are

more flexible and powerful because the input is divided into two sets of files: definition

files and templates. This results in creating an output set which is the result of the

correlation of these input files.

UIGU uses the multi-tier generator model to generate the UI objects (for the UI layer) and

other important layers. How UIGU implements the multi-tier generator will be discussed in

Chapter 4.

2.4.5 Compilers

A compiler is a program that transforms an input (input file) written in a computer language

(the source language) into an output written in another computer language. In this way, the

compiler generates code from the source file. The conventional compiler process starts with

25

the parsing of the source file. It continues with the generation of an abstract syntax tree

(AST, a data structure that represents what has been parsed), the creation of an abstract

semantic graph (ASG) from the AST, and the translation of this graph into the target

language.
 7

2.5 Code generators and input files

As shown in Section 2.4, all code generation models take input files (input definition files),

but the input does not have to be a file formally speaking. Indeed the input resources can

undergo a series of transformations before being consumed by the generator. Sections

2.5.1 to 2.5.4 discuss the characteristics of the UI code generators for a specific input set.

2.5.1 Database based UI code generators

Database tables along with database metadata contain enough information to generate entry

forms (UI forms) [13]. The metadata can come from the information schema or system

catalogs. In these catalogs, information about objects like tables, views, indexes, etc. is

stored; since the catalogs are normal database tables (but maintained by the DBMS engine),

they can be queried using regular SQL statements.

Obtaining information about database structure is crucial for the generation of UI artifacts

because the generator uses it to determine how to render the different UI components.

Column attributes like type, name, and length are used to translate and map each database

7
 Compilers are a broad and extensive topic. In this research we are not going to delve into their details.

26

object to the generated objects in a specific programming language [14]. For instance, size

of the text field is determined based on the length of that column.

Following this approach, the generator is in charge of executing a set of SQL queries on the

catalog, iterating over the results and applying a decision structure to generate the required

UI artifacts.

One of the advantages of this approach is that database engines have a very rich set of

attributes and constraints (null, unique, foreign keys, checking constraints, etc.) that helps in

the creation of elaborate UI objects and the relationships between them, also entity-

relationship diagrams (ERD) share many concepts with class diagrams, allowing mapping

between them [15].

The main disadvantage of this approach is that each database creates and maintains its

catalog of tables in a proprietary way; this means that a generator created for a specific

DBMS (i.e. PostgreSQL) should be rewritten if the DBMS (not the database structure) is

changed. To reduce the impact of this problem Mgheder and Ridley in [16] propose the

conversion of the fetched metadata into XML files and the use of them as the UI generator's

input (definition) files. XML based code generators will be discussed in 2.5.3.

2.5.2 Reflection-based UI code generators

Use of reflection is more often seen as an alternative to code generation than as an effective

code generation approach itself. Using super classes to put methods with features made by

the use of reflection is an approach to implement common behavior in a set of more simple

27

classes [17]. Since reflection calls are made at runtime the reflection approaches have

some key disadvantages:

 Reflection code is complex and hard to test and debug.

 Discovering and manipulating classes in runtime can create memory and

performance issues.

 Reflection challenges the principle of information hiding and the access controls

developers have specified, so its use should be minimized.

To overcome these issues, Rettig and Fowler suggest [18] the use of reflection to generate

those super classes in a preliminary code generation phase.

In a reflection-based code generator, the input file is a compiled class or set of classes. The

amount of information that can be obtained using reflection depends on the reflection API

of the target language. As can be seen in [17] and [18], reflection techniques are useful to

generate some specific functionality (i.e. persistence responsibilities, marshalling data,

etc.).

2.5.3 XML/XSL based UI generators

XML generators make heavy use of xml related technologies like XPATH and XSLT.

XPATH is a query language designed to select nodes in a XML document [19]. XSLT

(Extensible Style sheet Language: Transformations) is a language defined to transform an

XML document into another XML document; however, XSLT can also generate different

types of documents (structured or not). XSL documents contain a set of templates (rules) to

28

be executed when the walking logic matches (using XPATH) the fragments declared in the

templates.

In the XML approach, the input language is an XML file set. However, there is no

restriction on what the output can be [20]. XSLT scripts can be written to process the XML

documents conforming to the input language and generate output documents in various

required forms.

XML based code generators have at least the following phases [21]:

 Parsing: The XSLT processor parses the input XML files.

 Tree Building: The XSLT processor constructs a node/branch tree and provides

access to the tree using XPATH. The processor should populate the tree.

 Tree walking: This is done using XSLT‘s programmatic constructs and functions in

combination with XPATH to apply and match the defined templates for the defined

XML fragments.

 Writing: XSLT text-related functions write the result to an output stream.

Another technique is to use a XML schema (xsd) as an input instead of an XML instance.

XML schemas have a complete (“out of the box”) defined set of attributes and properties

that can be transformed (using XSLT) into common software definitions like: types, default

values, boundaries, inheritance, etc. However an xsd file is also an XML file, so, these code

generators are also XML-based code generators.

29

One of the most important advantages of XML GUI based generators is that many GUI

technologies use XML-like documents (i.e. html, xhtml, wml, mxml, etc.), making the

generation process a transforming process between documents of the same kind [22]. In

addition, XML is a fully standardized language with many supporting libraries and tools.

In the other hand, among the disadvantages of XML-based generators are

 XSLT is not a complete programming language; there are transformations that

cannot be done using only XSLT.

 XSLT is a functional language with no side-effects. There are many ‗habit

adjustments that application programmers need to make before becoming

comfortable with XSLT programming [20].

 The XSL documents created to generate non-XML documents can be difficult to

read and understand, and hence to maintain.

When the source of the input definition file is not XML, an additional step is required. That

is, to create an XML file based on the definition file. This XML file is an intermediate

representation of the input.

2.5.4 Templates

Template files are also input files for multi-tier/partial class code generators. When the

output files are both complex and structured, template technologies become handy to

separate the code definition logic (basically the information in the input definition file set)

30

and the code formatting structure. This means that the format of the output files is explicitly

declared in the template. Templates are also an effective way to modularize and reuse

common structures.

In this research we selected the Java Emitter Template (JET) technology to generate both

source and the UI code. We use template technology not only because Umple uses JET

extensively in the generation process, but also, because JET is simple and easy to

understand.

 JET is a component of the Eclipse Modeling Framework (EMF) project. The templates

work using a subset of the Java Server Pages (JSP) syntax [23], where the code within

―<%‖, ―%>‖ tags is directly copied over to the resulting file, and code outside of these is

passed as parameters to StringBuffer.append(…) operations. The templates files are

compiled, resulting in an intermediate component, which is a Java class with a generate

method. The generate method takes a parameter of type Object, to customize the generated

files (or fragments).

Other template technologies are ERb[24] and MASON[25].

2.6 Design Patterns

Umple generates the domain objects, but our target is to generate a fully operative default

user interface. To achieve this we have to fill some gaps to link the UI with the domain

objects. In the following sections we are going to present an overview of three design

31

patterns used in UIGU to fill these gaps.

2.6.1 Model View Controller

MVC is a design concept that attempts to separate an application into three distinct parts:

Model, View and Controller. The model is made up of application data and business rules,

it is the core of application and controls data access and data update; the View is in charge

of the expression of model content and it receives data from model (through the controller)

and decides the data show form [26].

The logical separation of the application into these parts ensures that the Model layer is

completely independent of how it is rendered. It is restricted to just represent the domain

objects of the application and to implement the business logic. Likewise, the View layer is

responsible to render (display) the data, and the implementation of the validation logic to

ensure the coherence and integrity of the user input. The Controller directs the user to the

views to be displayed and notifies the model layer of data changes and requests for

retrieval.

The MVC approach is largely based on an event-driven environment in which the user

drives the flow of the application by using the interface [27].

In UIGU, the Model is represented by the domain objects and a persistence layer; the View

and the Controller are responsibilities of each UI provider. The next section will discuss

the pattern used in that persistence layer. Chapter 4 will talk about what UI providers are.

32

2.6.2 Data Access Object (DAO)

In many software applications, domain objects have to persist (i.e. store) their data.

However there are many different storage mechanisms like mainframe systems,

Lightweight Directory Access Protocol (LDAP) repositories, relational databases, etc. Such

disparate data sources offer challenges to the application and can potentially create a direct

dependency between application code and data access code [28].

The DAO pattern provides a solution to avoid this dependency by the creation of a new

layer (the DAO layer) to encapsulate all data access code. The DAO completely hides the

data source implementation details from its clients. As a requirement, the DAO‘s public

interface should not change when the underlying data source changes, in this way the DAO

helps to adapt the application to different storage schemes without affecting upper layers

and/or components. Essentially, the DAO acts as an adapter between the components and

the data source.

Another advantage of this approach is that the development of the application can be

divided into more teams, which will, according to their expert knowledge, work on the data

access objects or on the implementation of business processes in the business logic tier

[29].

Figure 15 shows a common DAO design.

33

Figure 15. DAO pattern, class diagram

The DAO pattern defines the following classes [29]:

 Client: represents the component or layer, which requires access to the data source

to select, update, delete and insert data

 AbstractDAO : Interface to be implemented by the ConcreteDAO, this approach

assures that the Client logic, referencing this interface type, will remain intact if the

ConcreteDAO is replaced or modified.

 ConcreteDAO – This class abstracts the underlying data access implementation for

the Client.

 DataSource - Represents a data source implementation (i.e. RDBMS, XML

repository, CSV files, etc.)

 ValueObject - Represents a transfer object used to decouple the Client from

ConcreteDAO.

34

UIGU uses the DAO pattern to register the instances created by the user. The Concrete

DAO implementations (FakeDAO) use a HashMap to keep the instances alive during a user

session. Chapter 4 will talk about the DAO object generated by UIGU.

The following section discusses how the flexibility of the DAO pattern can be increased by

the adoption of the Abstract Factory pattern.

2.6.3 Abstract Factory

The access to one particular data source will generate a certain number of data access

objects (DAOs); this group of objects can be considered as a ―family‖ of objects. The

abstract factory pattern allows the creation of each specific ―family‖ of DAO objects by the

implementation of a factory object. From the implementation point of view, the application

should provide a different factory for each data source (i.e. OracleDAOFactory,

XMLDAOFactory, etc.). This strategy defines the creation of an AbstractDAOFactory that

can construct various types of concrete DAO factories, once the client instantiates the

required DAOFactory, the client uses it to get the implemented DAOs for the defined data

source. Figure 16 shows the DAO pattern using the AbstractFactory pattern.

To allow the customization and extension of the generated prototype, UIGU generates a

DAO+AbstractFactory layer, to allow the switch from the generated FakeDAO to a real

persistent mechanism in a clear and simple way.

35

Figure 16. DAO + AbstractFactory, class diagram

2.7 UI Frameworks

One UIGU feature is the possibility to generate UI code for different UI technologies. For

this purpose, UIGU introduces the concept of render providers. A render provider (UI

provider) is a concrete UI generator for a target technology. As a proof of concept in this

research we developed two render providers: a Java Server Faces provider and a JavaFX

provider. Sections 2.7.1 and 2.7.2 are an overview of those technologies. Render providers

are defined in detail in chapter 4.

36

2.7.1 Java Server Faces (JSF)

Java Server Faces is a standard Java framework for building user interfaces for Web

applications. Its key advantage is that it simplifies the development of the user interface,

which is often one of the more difficult and tedious parts of Web application development

[30].

Java Server Faces was designed to simplify the development of user interfaces for Java

Web applications in the following ways:

 It provides a component-centric and client-independent development approach to

building Web user interfaces.

 It simplifies the access and management of application data from the Web user

interface.

 It automatically manages the user interface state between multiple requests and

multiple clients.

To provide flexibility, JSF technology introduced the notion of render kits. A render kit

defines how component (graphical control) classes map to component tags that are

appropriate for a specific client [31]. The Java Server Faces implementation includes a

standard HTML render kit for rendering to an html client. There are render kits for other

technologies like xhtml, wml, svg, etc.

Like any other web application, a JSF application is made by different pieces (or

components), a JSF application should include:

37

 A set of web pages (jsp, html, wml, etc.).

 A set of backing beans (or managed beans), components that define properties and

functions for UI components on a web page.

 A set of faces-config.xml files to define page navigation rules, configure the backing

beans and configure other custom objects.

 A web.xml (deployment descriptor).

 Custom objects and custom tags.

The backing beans life cycle is controlled by the JSF framework using the scope element in

the respective Managed-Bean declaration. Table 3 shows the different scopes available

[31].

Scope Description

None These beans are not instantiated nor stored in the request, session, or

application objects. Instead, they are instantiated on demand by another

managed bean. Once created, they will persist as long as the calling bean

stays alive because their scope will match the calling bean's scope.

Request These beans are instantiated and stay available throughout a single HTTP

request. This means that the bean can survive navigation to another page

providing it was during the same HTTP request.

Session These beans will be stored for the HTTP session. This means that the values

in the managed bean will persist beyond a single HTTP request for a single

user. This means that the beans are going to be available during multiple

requests.

Application These beans retain their values throughout the lifetime of the application and

are available to all users.

Table 3.Backing Beans scope

In order to handle the different tasks required to build and interact with a web application,

the JSF architecture provides a rich set of UI components and a complete group of models

to support those components. Table 4 shows the available JSF models.

38

Model Description

Rendering model Defines how to render the components.

Event and listener model Defines how to handle component events.

Conversion model Defines how to register data converters onto a component.

Validation model Defines how to register validators onto a component.

Table 4. JSF Models

In UIGU, the JSF render provider is responsible for the generation of the xhtml pages,

configuration files (web.xml and faces-config.xml), backing beans and other utility classes.

Chapter 4 will discuss in depth UIGU's JSF render provider.

2.7.2 Java FX

JavaFX is a rich client platform for building cross-device applications and content.

Designed to enable easy creation and deployment of rich Internet applications (RIAs) with

immersive media and content, the JavaFX platform ensures that RIAs look and behave

consistently across diverse form factors and devices. JavaFX applications are not restricted

to web browsers; in fact JavaFX also allows the creation of desktop applications.

Java FX provides a complete set of UI components (called controls) to build GUI

applications along with an event model and a data binding model. JavaFX applications are

written in a Java-like language called JavaFX scripting language. the JavaFX API provides

methods to interact with Java objects and Java also has APIs to interact with JavaFX

components.

We chose JavaFX to show how UIGU can generate a default UI for different UI

39

technologies, even though those UIs have to be generated in a different programming

language. In Chapter 6 "Extending UIGU", we use the JavaFX render provider to discuss

how to create new providers and how to extend them.

40

3 Research Questions

This chapter is a formal statement of the research questions this thesis explores.

3.1 From the model to the UI

As mentioned in Chapter 1, if modelers can go from the model to a working prototype (or

default UI), we believe they would be better able to understand the implications of their

design decisions, to evaluate alternatives and to validate their designs. Prior to the

development of Umple, changes in the model could not be instantly reflected in

implemented code for the system. Umple filled that gap [4], however there was still another

gap to fill: changes in the model were still not immediately visible in the UI, so modelers

could not get instant feedback about the implications of modeling changes. The first

research question we will therefore investigate is:

RQ1: How can we bridge the gap between models and the UI?

The criterion of success in answering this question would be that the generated UI follows

the model definition correctly in terms of attributes, associations, multiplicity and

modifiers.

41

3.2 The Umple abstract semantic graph as an input

In this research, we are proposing the use of the Umple abstract semantic graph (where

each node is an instance of the Umple metamodel) as an input to the code generator.

Therefore, the second research question we will investigate is:

 RQ2: What are the advantages and disadvantages of generating UI code starting with the

abstract semantic graph generated by the Umple compiler?

3.3 Generation scope

Like any other modeling tool, the information contained in an Umple system is limited.

In order to create a meaningful user interface, generating a UI using only the model (and its

metamodel), will create a boundary around what information can be determined, what can

be assumed, and what information is missing. The third research question we will therefore

investigate is:

RQ3: What are the limits of automatic UI generation from models?

3.4 Usefulness

The generated code should be clean and adaptable to a real world application. We intend to

improve the usefulness of the default UI by the integration of well-known design patterns

and programming language practices with our generated artifacts.

42

RQ4: To what extent can generated default UI code be customized and extended?

3.5 Multi-UI generation

Since Umple is a family of languages [4] rather than a single language, creating a UI

generator for Umple should involve the development of different UI generators for each

technology, however, instead of programming multiple generators, we are going to explore:

RQ5: How can a GUI generator generate UI code for different UI technologies?

43

4 The UIGU Generator

UIGU is a template based multi-tier code generation software system referred to throughout

this thesis. This software is an effort to provide a default user interface for a defined Umple

model and therefore to fill the gap between the domain objects and the UI layer.

After defining which were the operations that the generated UI should provide and the

Umple subset that it should support; our next question to address was: What is the most

suitable kind of generator to implement? The first version of UIGU was intended to be

independent of the Umple language, and this early version made extensive use of reflection

techniques over the Umple-generated Java classes. By the use of reflection, it was possible

to discover some characteristics of the attributes and the associations, but many

disadvantages were found:

 The immutable property of attributes cannot be determined because Umple creates

set methods for these attributes that simply return an error indicator.

 Association multiplicities cannot be determined. Umple generate if conditions in the

body of the add and remove methods, and these checks cannot be obtained by

reflective calls.

 There is no link between association roles. If two classes have two (or more)

different associations between each other, it was not possible to determine which

pair of variables represents each association. Figure 17 shows an example to

illustrate this problem. Using only reflection, it is not possible to determine the ends

44

of each association.

 The Java compiler (v. 1.6) drops the parameter names. If a constructor takes two or

more attributes as parameters and these attributes have the same type, is not possible

to determine which parameter represents each attribute.

Some of the problems listed above can be overcome if the designer employs better design

approaches, but our UI generator should be capable of generating more than just well-made

designs. Adding additional information in the form of Java annotations could help the

reflective generator to create the UI, but this involves the modification of the Umple

language. However, our target is to create a generator that fits Umple and not to fit Umple

into a generation approach.

Since Umple does all the compilation steps (parsing, building the abstract syntax tree,

populating the abstract semantic graph, etc.), the implementation of a compiler was

redundant. Figure 18 shows the points in which the generation process takes place. Having

the Umple model and its abstract semantic graph (Umple metamodel class instances) as

class School{

 * job -- * Person professors;

 * school -- * Person students;

}

class Person{}

public class School{
 private List<Person> professorss;
 private List<Person> studentss;

 …

}

…

public class Person {

 private School job;
 private School school;

 …

}

Figure 17. The Association problem. Umple code (left), Java generated code (right)

45

inputs, the adoption of the multi-tier generation model to develop a more complete

generator was found to be appropriate for the following reasons:

 Regarding the input:

o The ASG can only be inspected when the Umple compiler is running. When

the Umple compilation process is completed, the ASG of a specific model

does not exist anymore. The use of XML/XSL approaches implied the

creation of an intermediate representation of the metamodel to apply the

transformations.

o The Umple code generator is a template-based generator. UIGU, as an

Umple tool, had to follow the Umple generation approach.

 Regarding the requirements:

o The UI layer is a complete tier. Hence, partial class generators are not

suitable.

o The outputs (GUI and other support objects) are based on the inputs, but

they are not an expanded version of them, so inline and mixed code

generators cannot be used.

o The generator had to be flexible enough to generate UI code for different UI

frameworks. Since code mungers are tied with the desired output, to create a

different output is necessary to develop a different munger.

To keep the separation between the domain objects and UIGU's generated objects, the

result of the generation process is a complete MVC application with Umple domain objects

and a generated Data Access Object (DAO) set as model. This generated application

46

provides a set of CRUD operations for each class defined in the model. In Section 4.3.5 we

will discuss the architecture of the generated application.

Figure 18. UIGU inputs. Try 1: Umple generated java classes. Try 2: Instances of the

Umple metamodel (Abstract semantic graph)

A key concept introduced by UIGU is a fragment. A fragment is a portion of specific UI

code that can render a UI component or set of components that represent either an attribute

or an association for a defined CRUD operation or step, e.g. for one String immutable

attribute. The create fragment can be a label with the attribute name and a textbox to

receive the value from the user input, and the edit (update) fragment can be just two labels,

(because of the immutable modifier) one with the attribute name and the other with its

value. Section 4.1.2 explains the defined fragments and their applicability.

4.1 UIGU key concepts

This section describes the concepts required to understand the UIGU solution. In Section

2.2.1 we discussed each CRUD operation. From an implementation point of view some of

47

these operations can be divided into several intermediate steps.

4.1.1 CRUD intermediate steps

In a GUI application, each crud operation can be divided into several steps as follows:

 Create:

o Pre-construction: Some of the values gathered from the user input have to

be processed/transformed into the types and formats expected by the

constructor of the class to be instantiated. For instance, a String variable

used to represent a date has to be converted into either a Date object or

Timestamp object.

o Key construction: The key declared fields in the models have to be used to

check the uniqueness of the new object.

o Construction: Both the formatted values and the keys are passed as

parameters to the construction mechanism (i.e. a constructor, an SQL insert

statement, a DAO create method, etc).

 Read:

o Key construction: key fields are used to create the required Key to retrieve

the data.

o Prepare for edit or view: The data retrieved from the model have to be

formatted and converted into a user understandable format. (e.g.. a

timestamp into a date)

 Update:

o Copy: The modified values gathered from the user input have to be assigned

to the fields of the instance under modification. This copy also implies data

transformation.

o Save: The instance with the new values is saved.

 Delete:

o Key construction: key fields are used to create the required key to invoke

48

the delete operation (i.e. a SQL delete statement, an ejbRemove, etc.)

o Delete: The actual deletion (logical or physical) of the instance.

4.1.2 Fragments

As we introduced before, a fragment is a portion of UI code. Since the generated

application follows the MVC pattern, the fragments can be classified in two categories:

 View fragments

 Controller fragments

A view fragment represents the code that renders a graphical component (i.e. checkboxes,

calendars, textboxes, etc.) to the final user and its link (binding) with the related attribute or

association in the model. The generated graphical UI components have to follow either the

declared modifiers of the related attribute, or the navigability and multiplicity in the case of

an association.

A controller fragment represents the code necessary to communicate the graphical

components with the model layer in both ways: from the GUI to the model and from the

model to the GUI.

4.1.3 Generation Unit

A generation unit is the definition of an artifact to be generated as the result of the

integration of different fragments and templates into a single file. Each artifact (html page,

xml descriptor, css style sheet, java class, etc.) is defined in a generation unit. Different

generation units can share common fragments.

49

4.1.4 GUI properties

These properties are a set of constants defined to be used in the generation process. Some

of them are used for the generator itself (i.e. the output folder) and others are used by the

generation units (i.e. name suffixes, package prefixes, etc.).

4.1.5 Support files

Support files are the files required for the generated application to run properly, but are not

generated by Umple or UIGU. These include images, libraries, etc.

4.1.6 Umple Project

The ensemble of the Umple model, the GUI properties, the generation units and support

files conforms to an Umple model. This means that the objective of the UIGU generator is

the creation of the artifacts defined by an Umple model.

4.2 UIGU design aspects

In Chapter 3 we formulated the research question: How can a GUI generator generate UI

code for different UI technologies? Most of the design decisions made in UIGU‘s

implementation were adopted to provide such flexibility. To understand UIGU‘s

architecture, it is crucial to mention that a programming language usually has more than

one UI framework, even for the same GUI technology. For instance, Java Enterprise

Edition (JEE) provides UI technologies like the Servlet/JSP technology, but for this single

technology there are many UI frameworks, i.e. Struts, Tapestry and Expresso; all of them

are Java web frameworks and moreover, they are an implementation of the MVC pattern.

50

Each framework has its own libraries, configuration files, controller objects and even its

own html (or xml) tags. This makes most of its source files completely different and not

interchangeable. For PHP, many UI frameworks are also available, i.e. CakePHP,

CodeIgniter and Zend; like in Java's case, they are MVC frameworks, and each one has its

own set of objects, configuration files, tags, etc.

Since each programming language has more than one UI technology and each UI

technology has many UI frameworks, it was decided that the UI Generator had to split the

generation responsibilities into three different levels.

The upper level should take care of all common tasks between different programming

languages:

 Read both the Umple model and its metamodel.

 Provide a mechanism to locate and instantiate the code fragments (but not the

fragments themselves).

 Create and initialize the backing objects that are going to be used by the Generation

Units to generate the required files.

 Take care of all file system related activities (read files, write files, create folders,

etc).

 Provide all the functionality required to configure and use the generator.

 Provide a set of interfaces to be implemented by the lower levels.

The middle level is in charge of the common tasks between different UI technologies for a

51

given programming language:

 Provide a mechanism for registering and tracking (persistence) the objects created

by the user.

 Provide default implementation classes for the interfaces declared in the upper level.

Each class has to contain common code and routines in order to be extended by

classes in the lower level.

The lower level has to provide the UI fragments for a specific UI framework and a specific

programming language:

 Provide all the fragments required by the generation units.

 Provide the configuration files required by the target framework.

 Extend the default implementation provided by the middle level to add specific

methods and utilities.

UIGU, like Umple, uses JET technology to create the required templates for both the

generation units (which are templates that consume other templates) and the fragments.

The following section will provide an example to show how UIGU implements these three

levels. This example uses a concrete UIGU implementation of a Java Server Faces UI

generator for the Java programming language.

52

4.3 UIGU Architecture

In UIGU the levels described in the previous section are named (from top to bottom):

Model, Generator and Provider. Figure 19 shows UIGU‘s high-level architecture.

4.3.1 GUIModel

This component is responsible for the creation of the Umple Project, which is the final

result of the generation process. Figure 20 shows the GUIModel’s class diagram.

GUIModel’s classes and interfaces were designed to perform all upper layer tasks defined

in Section 4.2. This component encloses the common functionality and services required to

generate GUIs regardless of both the target programming language and the target UI

framework. Also the GUIModel declares the interfaces to be implemented by the Generator

and the Providers to integrate both specific language and specific UI framework artifacts.

In the following subsections we are going to present the key classes and interfaces of the

GUIModel component.

Figure 19. UIGU high level architecture

53

4.3.1.1 IGenerator

The IGenerator interface only declares the generate(…) method. This method takes an

Object as argument and returns a String object with the generated code. All fragment

classes have to implement this interface. Details about how JET-generated classes can

implement an interface will be discussed in Section 4.3.3.1.

4.3.1.2 UIProvider

In Section 4.1.2 we classified the fragments into two main categories: view and controller.

The cruise.ui.interfaces.UIProvider interface declares the required methods to be

implemented by a concrete UIProvider in order to return the appropriate fragments. Tables

Table 5 and Table 6 show the different declared methods and their purposes, for the

controller and view fragments respectively.

Method Purpose

getSetFragment Returns the attribute set method.

getGetFragment Returns the attribute get method.

getDeclarationFragment Returns the code required to declare the attribute as

an instance variable.

getAsignationFragment Returns the code required to assign a variable‘s value

to the attribute.

getCopyFragment Returns the code required to copy the value from an

attribute to the current attribute.

getPreConstructorFragment Any code (usually transformations) required before

the creation of the instance that owns the attribute.

getReverseCopyFragment Returns the code required to assign the attribute value

to a variable.

Table 5. UIProvider's methods for controller fragments

54

 Figure 20. GUIModel class diagram

55

Method
Purpose

getGUICreateFragment
Returns the UI code required to draw the attribute‘s

linked UI component for the create operation.

getGUIEditFragment
Returns the UI code required to draw the attribute‘s

linked UI component for the edit operation.

getGUIGridFragment
Returns the UI code required to present the

attribute‘s value as a column in a grid.

getGUIGridHeaderFragment
Returns the UI code required to configure the

header of the attribute‘s column in a grid.

Table 6. UIProvider's methods for view fragments

All methods described above return an IGenerator object and take two arguments: an

AttributeVariable, and a String varargs. The AttributeVariable object was briefly introduced

in Section 2.3. The varargs argument is used to pass parameters to the declared fragment.

The parameter replacement is done by the cruise.model.ParamaterManager utility class. To

do so each parameter in the template has to follow the signature #n# where n is the number

of the parameter to be replaced by the n
th

 value in the varargs.

The getClassMap() method is provided to return a HashMap with all declared classes in

the Umple model. Using this method, it is possible to obtain all associations and attributes

declared in an Umple class having its name (type).

4.3.1.3 UmpleProjectWriter

The cruise.writer.UmpleProjectWriter class provides the functionality to read the Umple

model and to write the generated Umple Project. UIGU has to be configured with an xml

file created following the xml schema (xsd) declared by the file UmpleProject.xsd (Please

56

refer to Appendix II).

The configuration file (referred in this section as UmpleProject.xml) contains sections

(tags) to configure the three components required to generate the UI application for a

specific framework. This implies that UIGU generators for either different languages or

different UI frameworks should have their own configuration files.

The following is an explanation of the structure of the UmpleProject.xml file:

 UmpleProject tag: This is the UmpleProject.xml’s root tag, and it is the parent of the

Properties, GenerationUnits and Files sections. Table 7 describes UmpleProject

tag's attributes.

Attribute Purpose

Name The name of the generated application.

UIFactory The provider to be used to render the GUI. i.e. the value

cruise.jsf.factory.JSFFactory, indicates that the Model will use the

JSFProvider.

OutputFolder The absolute path of the folder where all generated files have to be

created and all declared files have to be copied.

UmpleFile The absolute path of the Umple model file.

Table 7. UmpleProject tag

 Properties: In this section, all configurable options have to be declared in a Property

tag. Some of these options are exclusively for the Model, Generator or Provider

components, while others can be shared across all of them. For instance, if the

UmpleFolder property is declared , the GUIModel will copy the generated Umple

classes to the declared folder relative to OutputFolder. Table 8 shows the Property

57

tag's attributes. The properties are accessible from all components.

Attribute Purpose

Name Property name

Value Property value

Table 8. Property tag

 GenerationUnits: In this section, all generation units have to be specified. Note that

both the Generator and the Provider can create GenerationUnits, but from the

Model point of view there is no difference in the generation process (for more

details about the generation process, see Section 4.3.4). Table 9 shows the attributes

of the GenerationUnit tag. It is important to highlight the ParameterType attribute.

This attribute indicates what kind of argument is expected by the declared template

to generate the output. Table 10 describes the values accepted by this attribute.

58

Attribute Purpose Accepted values

TemplateClass The class name of the template to be

instantiated to generate the output.

Any IGenerator concrete

class

TemplatePackage Template Package of the declared

template class

It must use the dot (.) notation

(i.e. cuise.template.jsf)

ParameterType The kind of argument required by

the declared TemplateClass

NORMAL_CLASS_BY_CLASS

SINGLETON_CLASS_BY_CLASS

ALL_CLASSES

NORMAL_CLASSES

SINGLETON_CLASSES

NONE

PackagePreffix The package definition of the

generated file(s). This package is

translated to a folder hierarchy.

It must use the dot (.) notation

(i.e. web.pages.Airline)

ClassSuffix A suffix to be concatenate to the

generated file(s)

Any valid class and file name

(spaces, special characters,

slashes, etc. are not allowed)

OutputName Name of the generated file. This

attribute is ignored if the

ParameterType is set to

NORMAL_CLASS_BY_CLASS

or

SINGLETON_CLASS_BY_CLASS

Any valid class and file name

OutputExtension The extension of the generated

file(s)

Any valid extension

OutputSubFolder Indicates a subfolder relative to the

output folder to place the generated

files. If PackagePreffix is declared,

the folder hierarchy is created inside

the indicated subfolder

Any valid folder name

AddClassNameToRoute Indicates if a folder with the class

name has to be added at the end of

the folder hierarchy declared in

PackagePreffix

YES/NO

Table 9. GenerationUnit xml tag

59

ParameterType Purpose

NONE It passes a null value to the declared

TemplateClass. The output is just one file

with the package, name and extension

declared in the related attributes.

NORMAL_CLASS_BY_CLASS It passes all non singleton Umple classes to

the declared TemplateClass in a one-by-one

fashion. The output is as many files as non-

singleton classes are declared in the Umple

model. Each file has the package and

extension declared in the related attributes,

and its name is the class name concatenated

with the declared ClassSuffix.

SINGLETON_CLASS_BY_CLASS It passes all singleton Umple classes to the

declared TemplateClass in a one-by-one

fashion. The output is as many files as

singleton classes are declared in the Umple

model. Each file has the package and

extension declared in the related attributes,

and its name is the class name concatenated

with the declared ClassSuffix.

ALL_CLASSES It passes a List with all classes declared in

the Umple model to the declared

TemplateClass, the output is just one file

with the package, name and extension

declared in the related attributes.

NORMAL_CLASSES It passes a List with all non singleton classes

declared in the Umple model to the declared

TemplateClass, the output is just one file

with the package, name and extension

declared in the related attributes.

SINGLETON_CLASSES It passes a List with all non-singleton

classes declared in the Umple model to the

declared TemplateClass. The output is just

one file with the package, name and

extension declared in the related attributes.

Table 10. ParameterType's accepted values

 Files: All files and directories to be copied inside the output folder must be declared

in this section; files are copied with no transformations. This section supports the

60

use of two different child tags: Directory and File. Directory copies the contents of

the specified directory, and File copies only the declared file. Tables Table 11 and

Table 12 show their respective attributes.

Attribute Purpose

InputFolder The absolute path of the folder to be copied-

OutputFolder The destination folder, relative to the UmpleProject‘s OutputFolder

attribute.

Table 11. Directory tag

Attribute Purpose

InputFolder The absolute path of the folder containing the file to be copied

OutputFolder The destination folder, relative to the UmpleProject's OutputFolder

attribute.

Name Name of the file to be copied.

Table 12. File tag

UmpleProjetWriter uses JAXB [33] (Java Architecture for XML binding) classes to read

the UmpleProject.xml file. Those classes are: ObjectFactory, UmpleProject,

GenerationUnits, GenerationUnit Properties, Property, Files, File and Directory. These

classes are declared in the cruise.jaxb package.

The method generateUmpleProject(…) takes an UIGenerator as parameter to generate all

output files following the configuration and properties specified in the UmpleProject.xml

4.3.1.4 UIGenerator

The main purpose of this interface is to provide methods to access the declared classes in

the Umple model. These classes are divided into two categories: normal and singleton. The

61

concrete UIGenerator should implement this interface and declare the methods to obtain all

classes, all singleton classes and all normal classes (getAllClasses(), getSingletons() and

getClasses() , respectively).

This interface also declares methods to get the Properties defined in the UmpleProject.xml

(getProperties()), and a reference to the UIProvider.

4.3.1.5 FragmentResolver and GUIFragmentResolver

These (Resolver) classes were implemented to resolve the fragments required by an

attribute for the complete set of CRUD steps given the attribute‘s type and modifier. To do

so, they require a Map parameter in their respective constructors. The Map parameter

contains AttributeFragmentProvider objects for FragmentResolver and

GUIFragmentProvider objects for GUIFragmentResolver. AttributeFragmentProvider and

GUIFragmentProvider are wrapper classes with the appropriate get methods to retrieve the

fragments (i.e. getCopyFragment(…), getCreateFragment(…)). In order to generate the

code fragment, these get methods take an AttributeVariable as a parameter to pass it on to

JET generated (template) classes.

To generate the required Map parameter for the Resolver classes, UIGU provides Loader

classes. FragmentLoader and GUIFragmentLoader classes read xml descriptor files with

the fragment configuration.

The creation of two fragment configuration xml files is the responsibility of the concrete

UIProvider, one for controller fragments and the other for view fragments.

62

Figure 21 shows an example of the xml configuration for controller fragments.

As can be seen in Figure 21 the FragmentProvider tag provides attributes to specify the

packages where each template class is located (fragmentSetPckg, fragmentCopyPckg, etc.).

The Fragment tag declares the Fragment (template) classes for each pair of modifier and

type attributes. It is important to mention that if a fragment is not declared in this tag (i.e.

fragmentReverseCopy), the AttributeFragmentProvider class will return an empty String

when the respective get method is invoked. Also the fragment tag supports the use of

wildcards (*) in the type and modifier attributes. If a fragment cannot be located by the

Resolver using its type and modifier, the Resolver will try to retrieve it looking for wildcard

declared fragments, giving the modifier attribute precedence over the type attribute. Figure

22 shows an example of the xml configuration for view fragments.

Figure 21. Example of the xml configurator for controller fragments

Figure 22. Example of the xml configurator for view fragments

63

4.3.1.6 BackingObject

The BackingObject encloses the data required to generate a complete CRUD for a specific

class declared in the Umple model. It also inspects the respective UmpleClass object, the

related UmpleVariable and AssociationVariable objects and other Umple objects to gather

the information required to generate both, the view and the controller objects. This class

also provides some utility methods to determine if an attribute is a key (isKey()), if the

class has a parent class (hasParent()), and other methods to get the fragment provider, to

get the related DAO table, etc. BackingObject is the transfer object used by different UIGU

objects; BackingObject's methods like getClasses(), getSingletons(), getAllClasses(), etc. in

UIGenerator return Collections of BackingObject instances. Also the getClassMap()

method in UIProvider is a Map with class names as keys and BackingObject instances as

values. Table 13 shows BackingObject‘s most important methods and their purposes.

64

Method

Arguments Return Purpose

getKeysAttributes List<AttributeVariable> Returns a List of the attributes marked as

keys.

isKey AttributeVariable boolean Given an attribute it returns true if the
attribute is a key field of the class, and

false otherwise.

getClassName String Returns the class name

getImports List<String> Returns all dependencies required for

the class.

getPackageName String Returns the class package (equal to the
declared namespace)

getConstructorSignature String Returns the constructor signature for the

respective Umple generated domain
object.

getAttVariables List<AttributeVariable> Returns all declared attributes in the

Umple model, but not the keys.

getFragmentProvider UIProvider Returns a reference to the UIProvider.

getDAOTable String Use to determine wich DAO handles the

respective Umple generated domain
object.

getManyToOneAssociations List<AssociationVariable> Returns the 1--m Associations to normal

classes, with m>1.

getConstructorOneAsociations List<AssociationVariable> Returns the x--1 Associations to normal

classes, where x is any valid multiplicity.

getZeroOrOneAsociations List<AssociationVariable> Returns the x—0..1 Associations to
normal classes, where x is any valid

multiplicity.

getZeroManyToOptionalAssociations List<AssociationVariable> Returns the 0..m—0..m and the 0..1—
0..m Associations to normal classes,

where x is any valid multiplicity and

m>1.

getNManyToOptionalAssociations List<AssociationVariable> Returns the 0..m—n..m and the 0..1—

n..m Associations to normal classes,

where x is any valid multiplicity, m>1
and n>0.

getMandatoryToSingletonAssociations List<AssociationVariable> Returns the x--1 Associations to

singleton classes, where x is any valid
multiplicity.

getOptionalToSingletonAssociations List<AssociationVariable> Returns the 0..m—0..m and the 0..1—
0..m Associations to singleton classes,

where x is any valid multiplicity and

m>1.

getManyToOneSingletonAssociations List<AssociationVariable> Returns the x--1 Associations to

singleton classes, where x is any valid

multiplicity.

Table 13. BackingObject's important methods

BackingObject has only one public constructor which takes an UmpleClass as parameter. At

construction time, BackingObject resolves the attributes and associations inherited from

parent classes, and classifies all associations following the rules listed in Table 14.

65

Criteria

Returned By

Classes that require an instance of the

current objet to be constructed

getManyToOneAssociations

getManyToOneSingletonAssociations

The current object requires (mandatory) an

instance of the associated object at

construction time

getConstructorOneAsociations

getMandatoryToSingletonAssociations

The current object can be linked (optionally)

to an instance of the associated object at

construction time

getZeroOrOneAsociations

getOptionalToSingletonAssociations

Optional multiple associations not linked in

the constructor

getZeroManyToOptionalAssociations

Optional multiple associations linked in the

constructor

getNManyToOptionalAssociations

Table 14. Association classification

4.3.1.7 Other classes and interfaces

GUIModel contains several utility classes, some of them were created to modularize the

code and other ones just to join repetitive tasks. In the first group, it is important to mention

the AssociationResolver class which is used by BackingObject to classify the associations;

in the second group, the ClassWriter class provides several methods related with files and

directories operations (copy, write, delete, etc.).

GeneratorException is a RuntimeException thrown if something goes wrong in the

generation process.

4.3.2 GUIGenerator

In Section 4.2, we split the generation responsibilities into three levels. Having GUIModel

as the upper layer, and GUIGenerator in charge of middle layer responsibilities. While

GUIModel gathers common functions for different programming languages and UI

66

Frameworks, GUIGenerator joins common tasks for a specific programming language.

This means that in order to create a Complete GUIGenerator for a different programming

language, a new GUIGenerator has to be written, but it has to implement the interfaces

declared in GUIModel. To recap GUIGenerator‘s two main tasks are:

 Provide default implementation classes for the interfaces declared in the upper level.

Each class has to contain common code and routines in order to be extended by

classes in the lower level.

 Provide a mechanism for registering and tracking (persistence) the objects created

by the user.

We develop a GUIGenerator for the Java programming language (from now on referred

simply as GUIGenerator). Figure 23 shows GUIGenerator‘s class diagram.

For the first task, GUIGenerator provides the AbstractProvider and the

AbstractUIGenerator classes. These classes implement the GUIModel’s UIProvider and

UIGenerator interfaces respectively.

AbstractUIGenerator implements the UIGenerator interface. AbstractUIGenerator

classifies the classes declared in the Umple model into the three main categories:

singeltons, classes (normal) and allClasses (singletons + normal).

The AbstractProvider class uses the Resolver classes declared in GUIModel to provide

implementation to all get fragment related methods. This class declares references to the

67

UIGenerator‘s classes classifications (allClasses, classes, singletons) and the ClassMap. It

also has a reference to the Properties declared in the UmpleProject.xml.

A Concrete UIProvider should extend these abstract classes to add methods and utilities for

a specific UI framework.

GUIGenerator implements a factory pattern (through UIFactory) to be able to instantiate

different Concrete UIProviders. The implemented layer is based on the Generic Data

Access Objects strategy proposed by Hibernate [32]. Figure 24 shows the generated DAO

layer for a specific Umple model (see Appendix III, Example 1).

Figure 23. GUIGenerator's class diagram

68

For the second task, GUIGenerator provides a set of templates to create (using

UmpleProject.xml) a complete DAO layer, following the DAO+AbstractFactory approach.

UIGU‘s generated DAO layer contains a concrete DAO implementation for both the factory

Figure 24. Generated DAO class diagram and Umple model (upper left corner).

69

and the DAO itself (FakeDAOFactory and GenericFakeDAO respectively). The

FakeDaoFactory provides methods to access the Concrete DAOs (through the respective

DAO interface). GenericFakeDAO class is a generic class with the object or entity to be

persisted (T) and the key that identifies the object (PK) as type parameters.

GenericFakeDAO mimics a regular database DAO. However, the objects are not persisted

at all; they are referenced in a HashMap using the helper classes ObjectRepository and

Session. The ObjectRepository class maintains an object structure where each Entity

(domain object) is a ―Table‖ (implemented as a HashMap); When isA relations are

declared, the DAO layer implements the ―One inheritance path, one table‖ pattern, which

reduces each path in an inheritance tree to a single table [17].

To identify the domain objects, UIGU generates Key classes (the PK parameterized type in

GenericFakeDAO). These classes implement the equals and hashcode methods with the

attributes declared as keys in the Umple model. Currently, Umple does not support key

definitions using attributes of parent classes. This limitation prevents the inheritance of key

classes.

DAO + AbstractFactory pattern was adopted for flexibility reasons. In this way the user

can create his own implementation of GenericDAO, the DAOs interfaces, and DAOFactory,

in order to be able to swap the repository (for instance to a real database) without changing

any other UIGU generated code.

70

4.3.3 JSF Provider

To provide a proof of UIGU‘s concept we develop a first UIProvider for the JSF

technology. This provider was created using Jboss RichFaces[34]. RichFaces is a

component library for JSF and an advanced framework for easily integrating AJAX

Figure 25. JSFProvider’s class diagram

71

capabilities into business applications. This AJAX support allows the creation of advanced

UI interfaces for web applications. Figure 25 shows the JSFProvider’s class diagram.

The JSFProvider inherits the GUIGenerator abstract classes (AbstractProvider,

AbstractGenerator, and AbstractValidationProvider) to create concrete implementations

(JSFProvider, JSFGenerator, and JSFValidationProvider respectively), and to declare a

UIFactory to follow GUIGenerator’s factory strategy.

In Section 4.3.1.5 we talked about the GUIConfigurator.xml and AttributteConfigurator.xml

files; we explained that these files are used to declare the UI fragments for several CRUD

operations/steps. The UIProvider has to provide those files and to pass their file paths to the

AbstractProvider constructor. Since each UIProvider can declare different configuration

files to allow the user to customize the generator‘s output, the JSFProvider uses the

properties ATTRIBUTE_CONFIGURATOR and GUI_ATTRIBUTE_CONFIGURATOR to

declare the required file paths. These properties have to be declared in the properties

section of UmpleProject.xml. Figure 26 shows an example.

Chapter 5, Using UIGU, will discuss more about the configuration of the JSFProvider.

Figure 25 shows that one of the main responsibilities of each concrete UIProvider is the

Figure 26. UmpleProject.xml, declaring the attribute configurator xml files.

72

generation of both view code and controller code to support associations. This distribution

of responsibilities responds to the fact that each UI Framework has different navigation

models (going from one view, also known as screen, to another), making difficult a general

classification of the required fragments. While the AbstractProvider class (from

GUIGenerator) provides methods to access the attribute fragments and the ClassMap, the

JSFProvider class declares the required methods to get the association fragments. Before

talking about these fragments, we are going to explain the JSFProvider’s generated UI.

4.3.3.1 Skeletons

An overview of JET Technology was explained in Section 2.5.4. JET templates are

compiled into Java classes with a generate(Object) method with String as return type.

However UIGU requires that all fragments must implement the IGenerator interface (see

section 4.3.1.1). This implies that the default JET generated classes have to be customized.

Skeletons are JET‘s mechanisms to do such customization. Figure 27 shows the

JSFProvider‘s skeleton and a fragment declaring this skeleton.

Figure 27. IGenerator skeleton (left), skeleton declaration (right)

4.3.3.2 The Generated UI for Attributes

In Sections 2.2.2 and 2.2.3 we described the subset of attributes and associations supported

by UIGU. To determine how to render an attribute, UIGU uses the FragmentResolver class

to return the required fragment for an attribute regarding its type and modifier.

73

To render attributes the following general considerations apply:

 If an attribute is declared with an initial value, this value cannot be modified in the

Create operation.

 Since a defaulted attribute must be declared with an initial value, the attribute value

can only be modified in the Update (edit) operation. An icon will be displayed to

allow the user to return to the default (initial) value.

 Internal attributes will only be displayed in the create operation if and only if an

initial value was not indicated.

 An icon will indicate if an attribute is part of the key definition.

 Once an instance is created, Key attributes cannot be modified.

Figure 28 shows the Umple model for a single class with settable attributes for all

supported types.

To obtain the required fragment the caller has to invoke the appropriate get method in the

JSFProvider, passing the AttributeVariable and the parameters . Figure 29 shows how a

fragment can be retrieved using the getFragmentProvider() method in the BackingObject

class. Here, attVar is a reference to an AttributeVariable and the String

"a"+bckObject.getClassName() is a parameter to be replaced in the #1# holder.

74

Table 15 shows the template fragments and the generated UI components for the code listed

in Figure 28.

Figure 28. Umple Model showing settable attributes

UIProvider prov= bckObject.getFragmentProvider();

String codeFgm=prov.getGUICreateFragment(attVar, "a"+bckObject.getClassName());

Figure 29. Calling the fragment provider to get a create fragment

75

 Create Update Grid

Fragment UI no init value Fragment UI Fragment UI
UI init value

String

<h:outputText value="<%=attVar.getUpperCaseName()%>"

/>

<% if (attVar.getValue()==null){ %>

<h:inputText

value="#{#1#Bean.<%=attVar.getName()%>}"

></h:inputText>

<% } else {%>

<h:outputText value=<%=attVar.getValue()%>

style="text-align:right;" ></h:outputText> <%}%>

<h:outputText

value="<%=attVar.getUpperCaseName()%>" />

<h:inputText

value="#{#1#Bean.<%=attVar.getName()%>}" />

<f:facet name="header">

<%=attVar.getUpperCaseName()%>

</f:facet>

<h:outputText

value="#{#1#.<%=attVar.getName()%>}" >

</h:outputText>

Boolean

<h:outputText value="<%=attVar.getUpperCaseName()%>"

/>

<% if (attVar.getValue()==null){ %>

<h:selectBooleanCheckbox

value="#{#1#Bean.<%=attVar.getName()%>}" />

<% } else {%>

<h:selectBooleanCheckbox

value="#{#1#Bean.initial<%=attVar.getUpperCaseName()

%>}" disabled="true" /> <%}%>

<h:outputText

value="<%=attVar.getUpperCaseName()%>" />

<h:selectBooleanCheckbox

value="#{#1#Bean.<%=attVar.getName()%>}" />

<f:facet

name="header"><%=attVar.getUpperCaseName()%>

</f:facet>

<h:selectBooleanCheckbox

value="#{#1#.<%=attVar.getName()%>}"

readonly="true" disabled="true"/>

Integer

<% if (attVar.getValue()==null){ %>

<h:inputText

value="#{#1#Bean.<%=attVar.getName()%>}" >

<f:converter converterId="javax.faces.Integer" />

</h:inputText>

<% } else {%>

<h:outputText

value="#{#1#Bean.initial<%=attVar.getUpperCaseName()

%>}" style="text-align:right;" >

<f:converter converterId="javax.faces.Integer" />

</h:outputText> <%}%>

<h:outputText

value="<%=attVar.getUpperCaseName()%>" />

<h:inputText

value="#{#1#Bean.<%=attVar.getName()%>}" >

<f:converter

converterId="javax.faces.Integer" />

</h:inputText>

<h:outputText

value="#{#1#.<%=attVar.getName()%>}" >

<f:converter converterId="javax.faces.Integer"

/>

</h:outputText>

Double

<h:outputText value="<%=attVar.getUpperCaseName()%>"

/>

<% if (attVar.getValue()==null){ %>

<h:inputText

value="#{#1#Bean.<%=attVar.getName()%>}" >

<f:converter converterId="javax.faces.Double" />

</h:inputText>

<% } else {%>

<h:outputText

value="#{#1#Bean.initial<%=attVar.getUpperCaseName()

%>}" style="text-align:right;" >

<f:converter converterId="javax.faces.Double" />

</h:outputText> <%}%>

<h:outputText

value="<%=attVar.getUpperCaseName()%>" />

<h:inputText

value="#{#1#Bean.<%=attVar.getName()%>}" >

<f:converter

converterId="javax.faces.Double" />

</h:inputText>

<f:facet

name="header"><%=attVar.getUpperCaseName()%>

</f:facet>

<h:outputText

value="#{#1#.<%=attVar.getName()%>}" >

<f:converter converterId="javax.faces.Double" />

</h:outputText>

Date

<h:outputText value="<%=attVar.getUpperCaseName()%>"

/>

<% if (attVar.getValue()==null){ %>

<rich:calendar

value="#{#1#Bean.<%=attVar.getName()%>}"

popup="true" datePattern="yyyy-MM-dd"

showApplyButton="false" cellWidth="24px"

cellHeight="22px" style="width:200px" />

<% } else {%>

<h:outputText

value="#{#1#Bean.initial<%=attVar.getUpperCaseName()

%>}" style="text-align:right;" >

<f:convertDateTime type="date" pattern="yyyy-MM-

dd"/>

</h:outputText> <%}%>

<h:outputText

value="<%=attVar.getUpperCaseName()%>" />

<rich:calendar

value="#{#1#Bean.<%=attVar.getName()%>}"

popup="true" datePattern="yyyy-MM-dd"

showApplyButton="false" cellWidth="24px"

cellHeight="22px" style="width:200px" />

<f:facet

name="header"><%=attVar.getUpperCaseName()%>

</f:facet>

<h:outputText

value="#{#1#.<%=attVar.getName()%>}" >

<f:convertDateTime type="date" pattern="yyyy-MM-

dd"/>

</h:outputText>

Time

<h:outputText value="<%=attVar.getUpperCaseName()%>

" />

<% if (attVar.getValue()==null){ %>

<h:panelGrid columns="3">

<h:selectOneMenu value="#{#1#Bean.<%=

attVar.getName()+"Hour"%>}">

<f:selectItems value="#{timeBean.hours}" />

</h:selectOneMenu>

<h:outputText value=":" />

<h:selectOneMenu value="#{#1#Bean.<%=

attVar.getName()+"Minute"%>}">

<f:selectItems value="#{timeBean.minutes}" />

</h:selectOneMenu>

</h:panelGrid>

<% } else { %>

<h:outputText

value="#{#1#Bean.initial<%=attVar.getUpperCaseName()

%>}">

<f:convertDateTime pattern="hh:mm" />

</h:outputText> <% } %>

<h:outputText

value="<%=attVar.getUpperCaseName()%> " />

<h:panelGrid columns="3">

<h:selectOneMenu value="#{#1#Bean.<%=

attVar.getName()+"Hour"%>}">

<f:selectItems value="#{timeBean.hours}" />

</h:selectOneMenu>

<h:outputText value=":" />

<h:selectOneMenu value="#{#1#Bean.<%=

attVar.getName()+"Minute"%>}">

<f:selectItems value="#{timeBean.minutes}"

/>

</h:selectOneMenu>

</h:panelGrid>

<f:facet

name="header"><%=attVar.getUpperCaseName()%>

</f:facet>

<h:outputText

value="#{#1#.<%=attVar.getName()%>}">

<f:convertDateTime pattern="hh:mm" />

</h:outputText>

Table 15. Template fragments and generated UI components for the model listed on Figure 28 (settable attributes)

76

Figure 30 shows the generated UI components for defaulted attributes. The user can click

on the green icon to roll back the attribute value to the defaulted (initial) value. This icon

fires an AJAX call to return the default value from the controller.

<h:outputText value="<%=attVar.getUpperCaseName()%>" />

<h:panelGrid columns="2">

<rich:calendar value="#{#1#Bean.<%=attVar.getName()%>}" popup="true"

 id="<%=attVar.getUpperCaseName()%>#{uniqueId}"

 datePattern="yyyy-MM-dd" showApplyButton="false"

cellWidth="24px"

 cellHeight="22px" style="width:200px" />

<a4j:commandLink

 action="#{#1#Bean.resetToDefaulted<%=attVar.getUpperCaseName()%>}"

 reRender="<%=attVar.getUpperCaseName()%>#{uniqueId}">

 <h:graphicImage value="/images/icons/reload.png" style="border:0" />

</a4j:commandLink>

</h:panelGrid>

Figure 30. Generated UI for defaulted attributes. Template fragment (left). Generated UI

(right)

Key attributes behave in the same way as immutable attributes. To indicate that an attribute

is part of the key definition, UIGU renders a key icon next to the attribute UI component.

Figure 31 shows the generated UI for key attributes.

Figure 31. Generated UI components for key attributes. Create (left) and Update (right)

operations

4.3.3.3 The Generated UI for Associations

In Section 4.3.1.6 we classified the associations (Table 14). The classification was made

using three criteria:

 Multiplicity

 Mandatory/Optional

 Normal class/Singleton

77

JSFProvider contains methods to obtain the corresponding fragments for each type of

association. These fragments are divided into two categories according to the code required

to associate an object (or objects) to a class:

 Form Fragments: Code required to launch a window with the appropriate actions to

select (in some cases create) the object (or objects) to be linked with the instance

being created or updated.

 Panel Fragments: A window with the components required to select (in some cases

create) the object (or objects) to be linked.

In this way, a Form fragment is the code that launches a Panel Fragment. Table 16 shows

association classification and the key aspects of the generated UI.

Criteria

Returned By UI

Classes that require an

instance of the current

objet to be constructed

getManyToOneAssociations

getManyToOneSingletonAssociations

The launched window provides the

functionality to create, update and

delete the objects to be associated.

Since these objects require an

instance of the current object, the link

to launch that window is only visible

in the Update operation.

The current object

require (mandatory) an

instance of the associated

object at construction

time

getConstructorOneAsociations

getMandatoryToSingletonAssociations

The launched window provides the

functionality to select the object to be

associated with a list of objects

already created.

The current object can

be linked (optionally) to

an instance of the

associated object at

construction time

getZeroOrOneAsociations

getOptionalToSingletonAssociations

The launched window provides the

functionality to select the object to be

associated with a list of objects

already created.

Optional multiple

associations not linked

in the constructor

getZeroManyToOptionalAssociations

The launched window provides the

functionality to select (and unselect) a

collection of objects to be associated

from a list of objects already created.

Optional multiple

associations linked in

the constructor

getNManyToOptionalAssociations The launched window provides the

functionality to select (and unselect) a

collection of objects to be associated

from a list of objects already created.

Table 16. Classification of associations and generated UI.

78

The JSFProvider class contains methods to get the panel and form fragments (see Figure

25). A simple School – Person model is described in Figure 24. Figure 32 shows the

generated UI for this model. More complex models with supported associations will be

explored in Chapter 5.

To see the complete set of associations fragments please refer to UIGU‘s source code in:

http://www.site.uottawa.ca/~tcl/gradtheses/jsolano/src/JSFProvider

Figure 32. Generated UI for the School -- Person model depicted in Figure 24.

1) Person CRUD, 2) School CRUD, 3) Linking students (person) to a School, 4) Linked Students,

 5) Person CRUD showing a Person with an School, 6) Linking a School to a Person

http://www.site.uottawa.ca/~tcl/gradtheses/jsolano/src/JSFProvider

79

4.3.3.4 Controller Fragments

Section 4.1.2 classifies the fragments into two categories: View fragments and controller

fragments. Sections 4.3.3.2 and 4.3.3.3 were focused on View fragments (fragments that

render an UI component). Controller fragments are these code snippets returned by the

methods declared in Table 5. As well as View fragments, Controller fragments have to

implement the IGenerator interface in order to be instantiated by FragmentLoader. These

fragments are declared in the AttributeConfigurator.xml, The path to this file has to be

configured in UmpleProject.xml adding the ATTRIBUTE_CONFIGURATOR property in

the properties section. Table 17 shows a sample set of Controller fragments for a settable

boolean attribute.

To see the complete set of Controller fragments please refer to UIGU‘s source code in:

http://www.site.uottawa.ca/~tcl/gradtheses/jsolano/src/JSFProvider

http://www.site.uottawa.ca/~tcl/gradtheses/jsolano/src/JSFProvider

80

Method Fragment

getSetFragment public void set<%= attVar.getUpperCaseName()%>(

 <%= attVar.getType()%> <%=attVar.getName()%>) {

 this.<%= "a"+attVar.getUpperCaseName()%> = <%= attVar.getName()%>;

}

getGetFragment public <%= attVar.getType()%> get<%= attVar.getUpperCaseName()%>() {

 return <%="a"+ attVar.getUpperCaseName()%>;

}

<% if (attVar.getValue()!=null){ %>

public <%= attVar.getType()%> getInitial<%= attVar.getUpperCaseName()%>()

{

 return <%=attVar.getValue()%>;

}

<% }%>

getDeclarationFragment private <%= attVar.getType()%>

 <%= "a"+attVar.getUpperCaseName()%>= <%= attVar.getValue()%>;

getAsignationFragment <%="a"+ attVar.getUpperCaseName()%> = #1#;

getCopyFragment #1#.set<%= attVar.getUpperCaseName()%>(<%="this.a"+

attVar.getUpperCaseName()%>);

getPreConstructorFragment

getReverseCopyFragment this.a<%=attVar.getUpperCaseName()%>=#1#.get<%=

attVar.getUpperCaseName()%>();

Table 17. Controller fragments for a settable boolean attribute. attVar is an

AttributeVariable instance

Figure 33 shows how a fragment can be retrieved using the getFragmentProvider() method

in the BackingObject class.

4.3.3.5 Main Templates

A main template is a template that calls many template fragments. In this way, a main

template is a composition of fragments. Each main template is used to generate a

GenerationUnit, which is an actual application object like a class, a web page, a

configuration file, etc.

The JSFProvider component requires several main templates to generate the UI

UIProvider prov= bckObject.getFragmentProvider();

String codeFgm=prov.getSetFragment(attVar);

Figure 33.Getting a controller fragment; attVar is an AtributeVariable.

81

application. Generated web pages use Facelets technology [35] to compose views allowing

the reuse of xhtml pages in different views (i.e. the grid can be shown in the bottom of the

page to list the created objects, or in a pop-up to associate an object to another). Table 18

shows the templates (package cruise.ui.jsf.templates.impl.GUI) required to generate the

web (xhtml) pages (GUI objects). Table 10 describes ParameterType’s values and their

outputs.

82

Template Purpose ParameterType

Common Common declarations: Menu, Style classes, resource

bundles.

Output: Common.xhtml

ALL_CLASSES

Home Application‘s Entry point.

Output: Home.xhtml

NONE

Grid A simple grid showing the objects created in the system

for a given type. It provides the icons to select (for

update) and delete the object.

Output: Grid.xhtml

NORMAL_CLASS_BY_CLASS

BaseInsertable This template contains the form with the fields and

associations links to instantiate new objects for a single

class. It includes the related Grid (generated using the

grid template), other grids (for associations) and other

Insertable.xhtml generated pages (for associations).

 Output: <ClassType>Insetable.xhtml

NORMAL_CLASS_BY_CLASS

BaseMain Generates the entry point for a specific CRUD.

This template includes Common.xhtml and the related

Insertable.xhtml page.

Output: <ClassType>Main.xhtml

NORMAL_CLASS_BY_CLASS

GridSelectOne A grid with an icon to select an object (for associations).

It has a panel to show the current selection. It includes

the related Grid.xhtml.

Output: GridSelectOne.xhtml

NORMAL_CLASS_BY_CLASS

GridSelectMany A grid with an icon to select multiple objects (for

associations). It has a panel to show the current

selection. It includes the related Grid.xhtml.

Output: GridSelectMany.xhtml

NORMAL_CLASS_BY_CLASS

BaseInsertableSingleton This template generates a form to maintain a singleton

class. This template includes different Grid.xhmtl

pages (for associations) and Insertable.xhtml generated

pages (for associations)

Output: <ClassType>Insetable.xhtml

SINGLETON_CLASS_BY_CLASS

Table 18. GUI Main Templates

As we mentioned in Section 2.7.1, JSF requires a set of special objects called

BackingBeans to provide properties and functions to the views (i.e. when a calendar shows

a Date in the UI, the BackingBean has a Calendar attribute with the date showed in the

83

view). Each different view should have a BackingBean to work properly. While View

fragments are used by the GUI Main templates, Controller fragments (package

cruise.ui.jsf.templates.impl) are consumed by Controller Main templates. Table 19 shows

the Controller main templates required to generate the BackingBeans and other utility

classes.

Template Purpose ParameterType

BckBean This template generates a BackingBean for a given

class. The generated java class contains the logic to

interact with the DAO (model) layer, and with Java

objects to map attributes and associations. It also

contains actions to navigate between views.

Output: <ClassType>Bean.java

NORMAL_CLASS_BY_CLASS

BckBeanSingleton This template generates a BackingBean for a given

singleton class. The generated java class contains

the logic to interact with the DAO (model) layer,

and with Java objects to map associations. It also

contains actions to navigate between views.

Output: <ClassType>Bean.java

NORMAL_CLASS_BY_CLASS

BeanLinker This template generates the BeanLinker class. This

class is a helper class that serves as a container to

associate objects. When a view calls another view

to associate an object, the caller sends and empty

BeanLinker (just with the association name), and

the destination class sets the associate instance (or

collection of instances) in the BeanLinker.

Output: BeanLinker.java

NONE

MainBean This template generates a BackingBean with a

session scope (this is, there is only one instance per

user session and it is ―alive‖ until the session

expires. This class provides methods to get the

DAO factory and to navigate between CRUDs.

Output: MainBean.java

NONE

PageFlowUtils This template generates a BackingBean with a

session scope. This class contains helper methods to

provide a context to each view and to support the

communication (navigation) between views. The

following section will discuss the navigation model,

Output: PageFlowUtils.java

NONE

Table 19. Controller main templates

A JSF application requires at least two configuration files: faces-config.xml and web.xml.

84

The faces-config.xml contains information about the existing views, the navigation

(navigation rules), declared BackingBeans, validation converters, etc. It is possible to

define more than one faces-config.xml, this division is usually done for modularization

purposes. Figure 34 is a graphical representation of the navigation rules declared in the

generated faces-config.xml for the School – Person model described in Figure 24.

Figure 34. faces-config.xml's navigation rules declared in the School--Person model

The faces-config template (package cruise.ui.jsf.templates.impl.GUI.config) generates the

required faces-config.xml; it takes ALL_CLASSES as ParameterType.

The Application entry point, security constrains, parameters, and JSF configuration are

declared in web.xml. The web template (package cruise.ui.jsf.templates.impl.GUI.config)

generates the required web.xml; it takes NONE as ParameterType.

4.3.3.6 Navigation model

In order to create the application, it was necessary to choose an appropriate scope for

85

generated backing beans. In Section 2.7.1 we discussed backing bean scopes, but since the

generated JSF is a Rich Internet Application (RIA) with Ajax as mechanism to interact with

the server, and a user can define a model with reflexive associations (i.e. 0..1 A -- * A) or

cyclical associations (i.e. 0..1 A-- * B, * B -- * C and 0..1 C -- A), some issues about

navigation have to be analyzed.

Scopes None and Application are not suitable; the former, because our backing beans have

to be instantiated automatically when a user launches a CRUD, and the latter because if the

backing bean is shared between multiple users the data introduced by one of them will

affect the data of the other users.

 Request scope also has some drawbacks:

 The lifespan of the backing beans is limited to a request/response cycle. This means

that different requests are served by different instances. String, Integer, Boolean and

types with appropriate converters (like Date and Float) are automatically copied

from one instance to the next. However, other objects are not copied. For instance,

in our simple School – Person model, the PersonBean (Person Backing Bean) has a

School attribute to maintain a reference to the selected school; this reference is

going to be nullified in the next request.

 Ajax performs many requests underneath without reloading the UI, but each request

instantiates new request scoped backing beans. If the user clicks on an association

link and selects an object to create an association, the respective backing bean will

have a reference to that object; however, if the user clicks in a different association

86

link to create another association, the first reference is nullified because the first

reference is not copied and each action (each click on the links) will be served by a

different request.

On the other hand, Session scope backing beans will keep the references between different

requests, but this scope has an undesired side effect. If the model contains reflective or

cyclical associations in the generated UI, the user will launch from one (initial) view

another views (through associations) that eventually will launch the initial view

(referenced here as the current view). Since both the initial and the current view use the

same backing bean, the data of the initial view will be displayed in the current view, and the

modifications performed in the current view will update the values in the initial one. This is

not desired because probably both the initial and the current view are being displayed to

manage different associations.

The implemented solution uses a combination of the session and request scope. All backing

beans are request scoped, but each view runs in its own context to store the objects that are

not copied automatically. The contexts are stored in a stack (called PageFlow) available

through the session context. When a CRUD is launched, the PageFlow is initialized with

the context of the initial view. If the initial view calls another view, a new context is created

and stored in the stack. Finally, when a view is closed its context is removed from the stack.

The object used as a context is an instance of the BeanLinker class. Figure 35 shows the

navigation model when a Person is linked to a School in the Person – School model.

Section 4.3.5 will explain architecture of the generated application.

87

1

Figure 35. Sample navigation model for the Person -- School model.

Looking at home view. 1) Person CRUD is launched, 2) Person view invokes school view to associate a School instance to

a Person instance (student role), 3) School association is done, 4) Returning to home view

Note the Stack (PageFlow) with the respective context for each step.

88

4.3.4 UIGU Generation Proccess

The UIGU class is the entry point to UIGU‘s generation. The classes UIGenerator,

UIFactory, UmpleProjectWriter and UIProvider have an initialize method that must be

invoked before any other method (otherwise a cruise.exception.GeneratorException is

thrown). This strategy was adopted to break some dependencies between these classes, i.e.

UmpleProjectWriter reads the declared properties (in UmpleProject.xml), but UIFactory

requires these properties to instantiate the UIGenerator, while UmpleProjectWriter needs

an UIGenerator to generate the code. Figure 37 shows the generation process in a

sequence diagram. UmpleSystem and UmpleFile are Umple core classes (see Figure 10).

Unmarshaller and UmpleProject are Jaxb classes to read the configuration file.

4.3.5 Architecture of the generated application

As we discussed in Section 2.6.1 the generated application is an implementation of the

MVC pattern. In the MVC application output by UIGU, the model layer is composed of

Umple-generated domain objects and UIGU-generated DAOs. Controller layer

responsibilities are implemented by backing beans, and the xhtml (web) pages are part of

the View layer (see Figure 36).

Figure 36. MVC responsabilities

89

Figure 37. UIGU generation process

90

In addition to the MVC classes, the utility classes BeanLinker, PageFlowUtils and

Figure 38. School -- Person model. Generated application's class diagram

91

MainBean are also generated (see Table 19). In this chapter we used a simple School –

Person model (Figure 24) to illustrate many UIGU‘s features. Figure 38 shows the

generated application‘s class diagram

92

5 Using UIGU

This chapter is divided into two Sections. Section 5.1 explains how to use the UIGU

generator and Section 5.2 shows the characteristics of the generated applications and how

to interact with them. An insurance system example will be used through this chapter to

illustrate each step. This example will help us to show UIGU‘s features and limitations.

Figure 39 shows the Insurance system model. (The source code can be found in Appendix

III, Example 2 or visit: http://www.site.uottawa.ca/~tcl/gradtheses/jsolano/src/examples).

Figure 39. Insurance System model

5.1 Using UIGU’s Generator

As we mention in Chapter 4, UIGU must be configured using an xml instance of

UmpleProjet.xsd (Appendix II). The name of the file can be arbitrary, but in this chapter we

will call it UmpleProject.xml.

http://www.site.uottawa.ca/~tcl/gradtheses/jsolano/src/examples

93

5.1.1 Configuring UIGU

For a defined UIProvider, the UmpleProject.xml can be either reused with few

modifications or reused but overwriting some attributes in the command line. In Section

4.3.1.3, we described the different sections and attributes of the configuration file. If the

user wants to create an UmpleProject.xml specific for one defined model, the required

modifications are related to the location of the required files to build the project, and the

paths to write the generated files. All locations (or paths) can be declared either as absolute

or relative to the current folder, unless indicated otherwise. Appendix IV contains a sample

xml file for the JSFProvider. The required modifications are:

 UmpleProject tag

o OutputFolder: In this folder, the generated files are going to be

written/copied. If the folder does not exist, UIGU will create it. If the folder

is not empty, its content is going to be deleted before the generation process..

o UmpleFile: The location of the model to be generated. Since at the

beginning of the generation process the output folder‘s content is deleted,

this file cannot be in the same location declared in the output folder attribute.

o Name: The name of the project. This does not allow spaces. This name is

going to be used to identify the project. JSFProvider uses this attribute to

create a header in all xhtml pages and to declare the project in the web.xml

file.

o UIFactory: The class name of the factory object (it should extend

cruise.factory.UIFactory) declared by the UIProvider. It must contain the

94

package (e.g. cruise.ui.jsf.JSFFactory).

 Properties: In this section several properties are declared, some of them are required

by the GUIModel and the remaining ones are required by the concrete UIProvider.

o UMPLE_FOLDER: The location where the domain objects have to be

moved, relative to OutputFolder. For the JSFProvider this value has to be

set to JavaSource.

o ATTRIBUTE_CONFIGURATOR: The location of the xml file with the

fragment configuration for the controller objects. This location should be

declared relative to the UIProvider folder (or Jar file). For the JSFProvider

this value has to be set to xml/AttributeConfigurator.xml.

o GUI_ATTRIBUTE_CONFIGURATOR: The location of the xml file with the

fragment configuration for the view objects. This location should be

declared relative to the UIProvider folder (or Jar file). For the JSFProvider

this value has to be set to xml/GUIAttributeConfigurator.xml.

o PROVIDER_JAR: If it is present, this property indicates to UIGU where is

the UIProvider Jar file. Otherwise, UIGU will try to locate this file using the

classpath.

 Files: In this section all required files (including libraries) have to be copied to

specific locations inside the OutputFolder should be declared. It is important to

mention that each server contains some libraries by default, and to avoid duplication

(and therefore the JAR hell [36]) some of them have to be commented out, e.g.

UIGU was tested in JBoss versions 5.0.1 GA and 5.1.0 and Tomcat 6.0.24.

95

However, Tomcat requires some libraries that are build in JBoss. Figure 40 shows a

fragment of the UmpleProject.xml for the JSFProvider to illustrate this problem.

Figure 40. Files section fragment.

As we mentioned, for a defined UIProvider, only few changes are required to configure

UIGU. Table 20 resumes the required changes for the insurance system. These changes are

in the UmpleProject tag. From this point, we are going to assume that the Umple file is

called Insurance.ump and all files and folders are in the same location (Figure 41).

Figure 41. Insurance system required files

Attribute Value

UmpleFile Insurance.ump

Name Insurance_System

OutputFolder InsuranceApp

Table 20. Insurance System specific values

To reuse the UmpleProject.xml file with no changes the user can overwrite the attributes

96

defined in Table 20. The next section explains how to overwrite these attributes.

5.1.2 Running UIGU

To run UIGU it is necessary to declare GUIModel, GUIGenerator, UIProvider and Umple

jar files in the Java classpath. The class cruise.generator.UIGU is UIGU‘s main class. This

class is inside GUIGenerator.jar. Its main method takes four parameters; three of them are

the paths of the UmpleProject.xml file, the Umple file, and the output folder; the fourth one

is the project name. However to run UIGU, only the first parameter (UmpleProject.xml‘s

path) is mandatory. If the other three parameters are not provided, UIGU will use the values

declared in the UmpleProject.xml file. When the process is running, UIGU prints out the

filename of the file that is being generated or copied. Figure 42 shows the command

required to run UIGU and the console output (partial). UIGU requires Java 1.5 or higher to

run.

java -cp GUIModel.jar;JSFProvider.jar;GUIGenerator.jar cruise.generator.UIGU UmpleProject.xml

java -cp GUIModel.jar;JSFProvider.jar;GUIGenerator.jar cruise.generator.UIGU UmpleProject.xml Insurance.ump InsuranceApp

Insurance

Copying: C:\Insurance\Insurance.ump

Loading JAR: JSFProvider.jar

Generation process started

Writing: C:\Insurance\InsuranceApp\JavaSource\dao\insurance\core\ClaimDAO.java

Writing: C:\Insurance\InsuranceApp\JavaSource\dao\keys\insurance\core\ClaimKey.java

Writing: C:\Insurance\InsuranceApp\JavaSource\bundles\insurance\core\Claim.properties

Writing: C:\Insurance\InsuranceApp\JavaSource\web\insurance\core\ClaimBean.java

Writing: C:\Insurance\InsuranceApp\WebContent\pages\insurance\core\Claim\ClaimInsertable.xhtml

Writing: C:\Insurance\InsuranceApp\WebContent\pages\insurance\core\Claim\ClaimMain.xhtml

Writing: C:\Insurance\InsuranceApp\WebContent\pages\insurance\core\Claim\grid.xhtml

Writing: C:\Insurance\InsuranceApp\WebContent\pages\insurance\core\Claim\gridSelectMany.xhtml

Writing: C:\Insurance\InsuranceApp\WebContent\pages\insurance\core\gridSelectOne.xhtml

Writing: C:\Insurance\InsuranceApp\JavaSource\dao\insurance\core\PersonDAO.java

Writing: C:\Insurance\InsuranceApp\JavaSource\dao\keys\insurance\core\PersonKey.java

Writing: C:\Insurance\InsuranceApp\JavaSource\bundles\insurance\core\Person.properties

…

Generation SUCCESS

Figure 42. Running UIGU. Java command using the values declared in the xml file(top),

Java command overwriting attributes (middle), partial console's output (bottom)

97

5.1.3 Compiling UIGU

Since both Umple and UIGU outputs are source files, a compilation step is required. A JSF

application has to be compiled into a war (web application resource) file in order to be

deployed into a server. For the JSFProvider an apache ant [37] script (build.xml) is

provided. This script reads the xml file (UmpleProject.xml) passed as a parameter in the

command line to generate the compiled classes and the war file. Table 21 shows the tasks

defined in build.xml and their purpose.

Task Purpose Depends

run Run UIGU. It has the same effect as the java

command described in Figure 42

compile Compile all java classes into a bin directory inside

the OutputFolder location

run

war Generate a standard JEE war file run, compile

Table 21. Ant tasks

Figure 43 shows the command to run and compile UIGU using ant and the resulting files

and folders.

The generated war file (Insurance_Sytem.war) can be deployed in any JEE compliant

server.

98

5.2 Using the generated application

As an Umple UI generator, UIGU shares many of Umple‘s features and limitations. In

Section 2.2 we explained the Umple subset implemented by UIGU and also discussed the

minimum requirements to create an effective CRUD application. One of those requirements

is the use of keys for read operations. This implies that each class declared in an Umple

model has to declare key fields to allow UIGU to generate an effective CRUD. Umple

version (1.6.3), used to develop UIGU, supports key declarations; however, it does not

support the declaration of keys using inherited fields. In our insurance system example, the

policyNumber field is enough to identify an InsurancePolicy. This field is also inherited by

LifeInsurancePolicy and PropertyInsurancePolicy; however, these children classes cannot

ant -DxmlFile=UmpleProject.xml

ant -DxmlFile=UmpleProject.xml –DumpleFile=insurance.ump

–DoutputFolder=InsuranceApp –DprojectName=Insurance

Figure 43. Running UIGU. Ant command (top), resulting files and folders (bottom)

99

declare policyNumber in their key definitions. Repeating the policyNumber field in the

children classes leads to a compilation error, because Umple does not support attribute

overriding. This limitation forces the declaration of different key fields for children classes

(e.g. lifeInsurancePolicyId and propertyInsurancePolicyId). The ability to declare key

fields using inherited attributes is planned for future releases of Umple.

5.2.1 Deploying the generated application

Each server has different procedures to deploy a web application. As we mentioned, the

generated applications were tested in Tomcat 6, JBoss 5.0.1 and JBoss 5.1.0. In these

servers, different libraries have to be included in the war file (JBoss contains some of them

out of the box). See Files in Section 5.1.1.

To deploy the application in Tomcat, the war file has to be copied into the webapps folder.

To deploy it in JBoss, the war file has to be copied into the /server/default/deploy folder

instead.

5.2.2 Using the JSF web application

Our Insurance system contains definitions to show the Umple subset supported by UIGU.

Figure 44 shows the Insurance system class diagram
1
. The following subsections explain

the different elements of the generated application.

1
 The diagram can also be found in

http://www.site.uottawa.ca/~tcl/gradtheses/jsolano/src/examples/insurance/diagram

http://www.site.uottawa.ca/~tcl/gradtheses/jsolano/src/examples/insurance/diagram

100

Figure 44. Insurance system class diagram

5.2.2.1 Navigation Menu

UIGU generates a menu allowing the user to navigate from one CRUD to another. Figure

45 shows the navigation menu of the Insurance System application.

101

Figure 45. Insurance System navigation menu

5.2.2.2 Forms

Each declared class has a corresponding form in its view. The forms provide input

components to manage attribute values and links to launch association panels. Figure 46

shows the form generated for LifeInsurancePolicy.

Figure 46. LifeInsurancePolicy form

102

5.2.2.3 Input components

To set the value of an attribute, UIGU renders different input components according to the

attribute type. Figure 47 shows the available input components.

Figure 47. Input components. 1) Textbox for String, Integer and Double attributes, 2)

Calendar for Date attributes. 3) Combo boxes for Time attributes

5.2.2.4 Icons

In a UIGU-generated application, many icons are rendered, some of them trigger certain

actions, while others provide additional information to the user. Table 22 summarizes these

icons and their purpose.

Icon Purpose

 When this icon is included in a grid, it triggers a delete action. In a current

selection panel, the user can de-associate the selected instance by clicking on it.

 A click on this icon will trigger an edit action; the data of the selected instance is

going to be loaded in the form.

 This icon is only rendered for defaulted attributes in the edit operation. By

clicking on it, the user can restore the attribute value to its default value.

 This icon indicates that the attribute is part of the key definition.

 If this icon is shown, it indicates that a validation error has occurred.

Table 22. Generated application's icons

103

5.2.2.5 Association panels

When a user clicks in an association link, an association (modal) panel is launched. The

content of the panel can vary according to the declared multiplicity. When a single instance

has to be linked to a class (multiplicities 0..1 and 1), the respective association panel

contains a grid (bottom) with the available objects to be associated, and a current selection

panel (top) to show the selected instance (its key fields). To select an object, the user has to

click in the respective select link in the grid. To break the association between these objects,

the user has to click on the delete icon in the selection panel. Once the selection is done, the

user must click on confirm to bind the selected instance to the caller form. Figure 48 shows

the generated selection panel for the ―InsurancePolicy * -- 1 Person holder‖ association in

the Insurance System.

Figure 48. Association Panel for single selections

Figure 49 shows a detail of the InsurancePolicy form when a holder (Person) is associated.

104

Figure 49. Form components for single associations. Before (left) and after (right)

When the class to be associated has a multiplicity of n..m with n ≠ 1, the generated

association panel is similar to the panel generated for single selections; however, in this

case more than one object can be selected. To allow this, the current selection panel

contains a grid to show the selected objects. This grid is composed by the key columns of

the class being associated, and a delete icon to un-select an instance. Figure 50 shows the

generated selection panel for the ―0..1 InsuranceCompany -- * InsurancePolicy;‖

association in the Insurance System.

Figure 50. Association Panel for multiple selections

Figure 51 shows a detail of the InsuranceCompany form when multiple InsurancePolicy

105

instances are associated.

Figure 51. Form components for multiple associations. Before (left) and after (right)

A one-to-many association (1 -- *) has some special properties. Since the objects in the

many side require (in their constructors) an instance of the class in the one side, the

association link is not rendered in the create operation of the class with multiplicity one.

This is because in this create operation the required instance does not exist yet (it is being

created). The association link is showed only in the update (edit) operation. This link

launches an association panel with the complete CRUD of the class to be associated. In this

panel, the object being updated is automatically selected in its respective association

component. The grid in the bottom of this panel contains only the objects associated with

the object being updated. In this association panel, all CRUD operations can be invoked.

Figure 52 shows the generated Person form in the create (left) and update (operations).

Note that in the update operation the association components for the associations

―InsurancePolicy * -- 1 Person holder‖ and ―LifeInsurancePolicy * -- 1 Person

insuredLife‖ are rendered.

106

Figure 52. Person CRUD. Create (left),update (right)

Figure 53 shows the generated association panel for the ―InsurancePolicy * -- 1 Person

holder‖ association. Note that the holder is already selected.

Figure 53. Association panel for the “InsurancePolicy * -- 1 Person holder”

An important feature of the generated association panels is that they can launch other

association panels. Figure 54 shows the Person CRUD launching an association panel for

107

InsurancePolicy and the latter launching a panel for Transaction.

Figure 54. Association panel launching an association panel

5.2.2.6 Grids

Grids are the components used to show the available instances in a tabular form. For a

specific class, the generated grid contains one column for each defined attribute and one

column for each key attribute of each 1 – X association. A type column is always included.

This column was added to point out when a row is an instance of the class maintained by

the current CRUD, or when it is an instance of a child class of the class being maintained.

The first column from the right contains icons to fire actions like edit, delete or select;

however, a CRUD can only delete instances of its own type. Figure 55 shows the generated

grid for the InsuredProperty class.

108

Figure 55. InsuredProperty generated grid. Note that the delete action is only available for

the row with InsuredProperty type

If a grid has more than 10 rows, a pager is automatically added. Figure 56 shows the pager

component.

Figure 56. Pager component

5.2.2.7 Validations

While Umple generates validation code to maintain the defined associations, UIGU adds

validation code to enforce correct data conversion from the user‘s input. Both kinds of

validation messages are shown above the main form. Figure 57 shows a validation message

for the Renewal class

109

Figure 57. Generated validation message.

5.2.2.8 Singletons

Given that a singleton class has only one instance, there is no a singleton CRUD strictly

speaking. To manage singletons and their relationships, UIGU generates a web form with

the required links. By definition, a singleton cannot be the many side of an association and

cannot have not initialized attributes (its constructor does not have arguments). Since there

is only one instance, the generated view does not contain a grid.

Figure 58 shows the singleton view generated for the InsuranceCompany class in the

Insurance System example.

110

Figure 58 . Singleton. InsuranceCompany view

If a class has an association to a singleton class, and this association is mandatory, the

singleton instance is automatically selected. Otherwise, if the association is optional, an

instance link is rendered to associate the singleton class, and a delete icon is showed to

break the association. Figure 59 shows the components rendered to associate singletons.

Figure 59. Form components to associate singletons. Mandatory (left), optional not

selected (middle), optional selected (right)

To show associations to singletons in a grid, an instance column is added. A checkmark

icon is rendered if the instance is associated, and a ―N/A‖ label is rendered otherwise.

Figure 60 shows the column added to the grids when a class is associated to a singleton.

Figure 60. Column representation of an association to a singleton.

Associated (left), not associated (right)

111

5.2.2.9 Inheritance

In Section 4.3.1.6 we mention that the BackingObject class resolves the attributes and

associations inherited by the use of the isA keyword. The UIGU-generated UI contains

components to manage the attributes and associations owned by a specific class and

inherited from parent classes. Figure 61 shows the UIs generated for the Transaction class

and its child class Renewal.

Figure 61. Transaction (left) and Renewal (right) CRUDs. Note that while the Transaction

grid shows both Transaction and Renewal types, the Renewal grid only shows Renewal

types

5.2.3 Other features

The applications generated using the JSFProvider contain other features not related to the

defined Umple model. The following subsections explain these features.

5.2.3.1 Session invalidation

The invalidate session button allows the user to restart the state of the applications. When a

session is invalidated, all object references in the persistence layer are deleted.

112

Figure 62. Invalidate session button

5.2.3.2 Internationalization

UIGU generates a properties file (resource bundle) for each class in the Umple model. The

name of classes, attributes and associations can be customized using this file. If bundles

with different locales are added, it is possible to run the application in different languages.

To do so, the bundle files have to be copied under the bundles package. Figure 63 shows

the generated resource bundle for the Vehicle class

5.2.3.3 Skinnability

RichFaces [34] has a skinability system allowing the user to define its own skins and

change the selected skin by setting a parameter in the web.xml file. We took this feature

and created a skin component to change the application skin at runtime. Figure 64 shows

the generated CRUD for the Renewal class with four different skins.

VehicleClassName=Vehicle

IdentificationNumber=IdentificationNumber

Model= Model

Manufacturer= Manufacturer

YearBuilt= YearBuilt

SequenceNumber= SequenceNumber

PropertyInsurancePolicy=PropertyInsurancePolicy

Figure 63. Resource bundle for the vehicle class

113

Figure 64. Different skins for the Renewal CRUD. 1) Wine, 2) Classic, 3) JapanCherry, 4)

Ruby. Note the skin combo in the upper-right corner.

In summary, in order to install and run the JSFProvider, besides the Java Runtime

Environment (version 5 or higher), the user has to install and configure an application

server (e.g. JBoss) or a servlet container (e.g. Tomcat). For compilation, Apache Ant is

highly recommended (but not mandatory).

The JSFProvider creates a complete web application that can be reused and converted into

114

a real application. However, if UIGU is used only for rapid prototyping purposes, the

overhead of installing and configuring the server, compiling the application and deploying

the war file using ant can be excessive. If the user‘s intention is just validate the model,

then a more agile UIProvider is desired. Next chapter will introduce a simpler provider

which generates ready-to-run applications.

115

6 Extending UIGU

As we mentioned in Section 4.3 the architecture of UIGU is divided into 3 levels:

GUIModel, GUIGenerator and UIProviders. This approach was taken to allow UIGU to

generate UI code for different technologies that reuse components in other layers.

The JSFProvider creates complete web applications to be deployed in an application server.

The advantages of these generated applications are:

 The applications can be accessed using a web browser without installing or

deploying any software in the client.

 The adoption of the DAO+Factory and the MVC patterns reduces the impact of

converting the generated application into a real JSF web application.

However, if the application being designed is not going to be a web application or the target

technology is not JSF or any other Java technology, these advantages are not important for

the system modeler. If UIGU is used as a tool to generate default prototypes for an Umple

model, a more agile provider is suitable; this provider should avoid deployment steps. To

accomplish this, a different technology had to be selected to create ready-to-run

applications. In Section 2.7.2 we mentioned that the JavaFX technology can create both

web and desktop applications; to execute these applications, the only requirement is that the

user must install the Java Runtime Environment (JRE) version 6.

116

In this chapter we will discuss how to create ready-to-run applications by developing a

simple JavaFX UIProvider. The simple School --Person model example defined in Section

4.3 will be used to compare the generated outputs of each UIProvider. Figure 65 shows its

Umple model.

Figure 65. School -- Person model

6.1 UIProvider classes

As with the JSFProvider, the JFXProvider must extend the UIFactory, AbstractProvider

and AbstractUIGenerator classes to interact with the GUIGenerator and GUIModel

components. These components generate the DAO layer, read the fragments, parse the

fragments, parse the resource bundles and create the BackingObject instances with the

attribute classification, keys, association classification, inherited fields and inherited

associations for each class defined in the Umple model. The source code of the required

classes can be found in http://www.site.uottawa.ca/~tcl/gradtheses/jsolano/src/JFXProvider

http://www.site.uottawa.ca/~tcl/gradtheses/jsolano/src/JFXProvider

117

6.2 Fragments

UIGU allows the declaration controller and view fragments to manage the different types of

attributes and associations. Given that JavaFX is not a pure MVC framework, both view

and controller components are coded in a single file called FX script. However, the code

required to manage a single attribute can be classified into controller fragments and (GUI)

flow fragments. The former have the same responsibilities as the controller fragments in the

JSFProvider plus the initialization of the UIComponets (e.g. a TextBox); the latter

fragments have to modify the behavior of a UIComponent for a specific CRUD step. Table

23 shows the (controller) definition fragment for a settable String attribute, the Umple

definition of the School‘s name attribute, its generated code and the generated UI.

Fragment var <%=attVar.getName()%>#4# = TextBox {

 columns: 15

 editable: #1#

 text: #2#

 visible: #5#

 };

 var <%=attVar.getName()%>#4#Box= HBox {

 spacing: 15;

 content: [<%=attVar.getName()%>#4#, getImg(#3#)]}

Umple

definition

String name;

key{name}

Generated

code

 var nameField = TextBox {

 columns: 15

 editable: true

 text: ""

 visible: true

 };

 var nameFieldBox= HBox {

 spacing: 15;

 content: [nameField, getImg(true)]}

Generated UI

Table 23. Settable String controller fragment and the generated output for the School's

name attribute

118

In this example, the name field is part of the key definition of the School class. Given that

key attributes cannot be edited, the (view) create fragment must enable the attribute

Textbox, while the (view) edit fragment has to generate the required code to deactivate

editing in the Textbox. Table 24 shows the create and edit fragments, and the generated

code for the School‘s name attribute.

CRUD step Fragment Generate code

Create <% AttributeVariable attVar =

(AttributeVariable) argument; %>

<% if (attVar.getValue()==null){ %>

<%=attVar.getName()%>Field.editable=true;

<% } else {%>

<%=attVar.getName()%>Field.editable=false;

<%}%>

nameField.editable=true;

Edit <%=attVar.getName()%>Field.editable=false; nameField.editable=false;

Table 24. View fragments for the School's name attribute. Note that the create fragment also

handles default values

6.3 Main Templates

As in the case of the JSFProvider, the JFXProvider requires main templates to join all

fragments in a compilation unit. Table 25 summarizes these main templates.

119

Template Purpose ParameterType

View This template contains the form with the

fields and association links to create new

objects for a single class. It includes an

instance of the grid generated by the Table

template.

 Output: <ClassType>View.fx

NORMAL_CLASS_BY_CLASS

Table A Java class that creates a jTable to

showing the objects created in the system

for a given type. It provides the buttons to

select (for update) and delete the object.

Output: <ClassType> Table.java

NORMAL_CLASS_BY_CLASS

KeyTable A Java class that creates a jTable to show

the keys of the selected objects in a many

(*) association.

 Output: <ClassType>KeyTable.java

NORMAL_CLASS_BY_CLASS

Menu This template creates a JMenu with the

links to access CRUD. Output: Menu.fx

ALL_CLASSES

Application This generates a Utility class used to

handle the main window. This class

controls the window events and the

scrolling.

 Output: Application.fx

NONE

PopUp Similar to main but, for popup windows. None

Main Generates the entry point for all CRUDs.

This template uses Application and Menu.

Output: MainView.fx

NONE

SelectOneView A class that creates an jTable with a button

to select an object (for associations). It has

a panel to show the current selection. It

uses the related KeyTable to show the

selected elements.

Output: <ClassType> SelectOneView.fx

NORMAL_CLASS_BY_CLASS

SelectManyView A grid with a button to select multiple

objects (for associations). It has a panel to

show the current selection in a KeyTable.

Output: <ClassType> SelectManyView.fx.

NORMAL_CLASS_BY_CLASS

Table 25. JFXProvider main templates

120

6.4 Navigation model

Unlike JSF applications, JavaFX objects do not require a scope definition. Therefore,

JavaFX applications do not require special contexts to store objects and values between two

different requests, and configuration files to set it up. This simplifies the navigation model

depicted in Section 4.3.3.6. Another important consequence is that the required main

templates are fewer than in the JSF counterpart. The generated views resemble those

generated by the JSFProvider. Figures 65 to 68 compare the generated views for the

School – Person Model.

Figure 66. School CRUD. JavaFX (left), JSF (right)

121

Figure 67. Person CRUD. JavaFX (left), JSF (right)

Figure 68. Linking a student (Person) to an School. JavaFX (left), JSF (right)

122

Figure 69. Adding students (Person) to a School. JavaFX (left), JSF (right)

6.5 Running the JFXProvider.

In the same manner as in the case of the JSFProvider, a default UmpleProject xml is

provided. In this file the user has to modify the OutputFolder, UmpleFile and name

attributes. To compile the resulting JFX application, an ant script xml is also provided. The

command to run this script is the same as the command shown in Figure 43.

When the ant task is done, the executable files are generated. Figure 70 shows these files.

To run the application the user has to double-click the .jnlp file (not the _browser.jnlp) or

open the html page to run it inside of a web browser.

123

.

Figure 70. JFXProvider executable files

6.6 Current state

The JFXProvider currently does not support all the Umple subset supported by the

JSFProvider. Support for singletons, Date and Time attributes, defaulted and internal

modifiers, and 1--* associations (currently it supports only 0--* , 1 -- 0..1 and *--*) are

planned for future releases.

124

7 Conclusions

The ideas and concepts presented in this thesis are part of an ongoing effort to unify

modeling and implementation of a system. Umple filled the gap between modeling and the

implementation of the domain objects and UIGU was developed to take these objects to the

UI level. Even in this initial version is easy to see how UIGU can help software modelers

to understand the implications of their modeling decisions and also how UIGU- and

Umple- generated objects can reduce the development time of a software solution.

7.1 Research Questions

We have proposed five questions in Chapter 3. These were the research questions our thesis

hoped to answer, or provide solutions to. This section briefly outlines our answers to these

research questions.

RQ1: How can we bridge the gap between models and the UI?

It is necessary to use code generation techniques to fill that gap. However, a new question

arises: which is the best generation approach to fill it? There are different answers to this

question. These answers depend on the selected generation approach. Strictly speaking,

this research did not start completely from scratch. Since the Umple language was in an

operative state, and it provided a complete metamodel to get the required details about the

model (attributes, associations, attribute modifiers, etc.). We analyzed the different code

125

generation approaches and decided that taking advantage of the Umple compiler and the

generated abstract semantic graph, where each node is an instances of the metamodel, was

the best approach. Having this, the multi-tier generator model was the most suitable

approach to implement UIGU, for the following reasons:

 Umple uses templates to generate the domain objects and this model supports the

use of templates to produce the output. In this way the skills required to understand

and expand Umple are close to those required to do the same with UIGU.

 The textual model is the single input file required. To get rid of reading and parsing

tasks, we integrated the Umple generation process to UIGU‘s generation process.

 Since a controller and view layers (or tiers) had to be generated on top of the

domain objects partial code generators were not appropriate.

 RQ2: What are the advantages and disadvantages of generating UI code starting with the

abstract semantic graph generated by the Umple compiler?

As an Umple tool, UIGU should follow the Umple solution. In this way many Umple

concepts were ported to UIGU (i.e. attribute modifiers, namespaces, multiplicity handling,

etc.). Integrating the Umple compiler into the UIGU generation process not only freed us

from parsing and reading the model file, but also gave us access to the abstract syntax

graph to navigate through the model that is the subject of generation. This graph contains

information about the model that could not be obtained through introspection or reflection

techniques without additional specifications from the user.

The main disadvantage is that since UIGU was built on top of Umple, it shares the same

126

limitations as Umple plus its own specific limitations. For instance, an Umple limitation is

that it currently does not fully support 1 – 1 associations and therefore UIGU does not

either. This is only a minor limitation though, since pragmatically, 1 -- 1 associations tend

to be poor modeling choices, with the preferred modeling solution normally being to merge

the two classes. UIGU-specific limitations are related to Umple constructs that UIGU does

not support yet (i.e. autoUnique, codeInjection, extraCode, etc.)

RQ3: What are the limits of automatic UI generation from the model?

All modeling techniques contain limited information about the system. Therefore the limits

of the code generated from these models is directly linked to the amount of information

provided by these models (i.e. in a reflexive association there is no standard notation in

Umple to create a constraint stating that an instance cannot be associated with itself).

Several efforts have been made to expand the scope of software models, One of them, OCL

(Object Constraint Language [38]), was added to UML to provide constraints and query

expressions that could not be expressed by diagrammatic notation. Adding OCL-like

constraints to Umple and (reading them with UIGU) will help to create UI applications that

can represent the user‘s requirements in closer manner.

RQ4: To what extent can generated default UI code be customized and extended?

Generated UI code has to follow appropriate design patterns to maintain the responsibilities

and roles of each piece of code appropriately separated. UIGU applications use the DAO

and Factory patterns to keep the persistence layer separated from upper layers (controller

127

and view). In this way, the user can provide his own set of DAO classes to switch the

persistence media from the default (fake) persistence to a real persistence technology. The

adoption of the MVC in the JSFProvider resulted in the generation of objects with a

defined set of responsibilities. These objects can be customized (or even replaced) by the

user with no impact in other objects and layers, if the public interface of an object is

respected. Other features like resource bundles and css skins will also help the user to

convert the generated application into a real and fully functional application.

RQ5: How can a GUI generator generate UI code for different UI technologies?

Similar UI technologies (i.e Struts and JSF) can be totally different from an implementation

point of view, even if they are created for the same programming language. Differences in

the underlying technology (e.g. web html pages vs swing windows), configuration files,

custom classes, custom tags, etc. Turn the creation of a multi-target generator into a

complex task. However, in our research we found that CRUD applications have a well-

defined set of operations and steps that can be implemented by relatively small pieces of

code and defined these as fragments.

The UIGU approach gathers all common tasks (fragment declarations, utility classes,

association classification, inheritance detection, reading files, writing files, etc.) in the

GUIModel and GUIGenerator components, and introduces the concepts of fragments and

main templates to delegate specific UI constructions to the UI providers. Using this

technique, the developer of a specific UIProvider can be focused on rendering tasks.

However the differences between UI technologies can result into a potentially high number

128

of fragments and templates.

7.2 Contributions

The following are the main contributions of this research.

UIGU provides a clean and fast way of see the impact of a design decision in a default (but

fully functional) UI application. This will help software modelers to catch potential

mistakes like redundant associations, required associations, special attributes (defaulted,

immutable, etc.), incorrect attributes types, wrong multiplicities, etc. UIGU will also help to

add improvements like class realization (inheritance), key definitions, singleton definition,

among others.

The UI generation architecture and its distribution of the responsibilities among the three

main components of UIGU (Model, Generator and provider), is an effective way to

implement multi-component-framework user interface generators

This research contributed to development of the Umple language in the following ways:

 The key keyword was added to the language to generate effective equality tests.

 The initialization of the Time and Date attributes was upgraded to allow

initialization from literals (strings).

 Code structures like doAfter, and doBefore were added to Umple after analyzing the

different fragments provided by a fragment resolver

 Many bugs where discovered and addressed.

129

7.3 Future work and possibilities

This thesis is the one of several different research subprojects related to Umple. There is

much work and possible research to be done in order to improve UIGU and its

functionality.

7.3.1 Expanding UIGU

This initial version of UIGU is intended to be a prototype providing a proof of concept.

Consequently we had to limit the scope of our work.

UIGU does not cover all Umple language features. The initial subset of Umple features

supported by UIGU was selected to allow the creation of effective CRUD applications,

however there are other data types to be supported (e.g. list, enum, etc), keywords (unique,

autoUnique, etc.) . These features can be supported easily by the definition of new

fragments. Other Umple constructs (e.g. Interfaces) should imply the development of new

classes and main templates. New UIProviders to support other technologies can also be

developed.

Umple research is growing in multiple directions. Support for state machines is currently

being added to the Umple language; OCL support and concurrent modeling support are also

being considered. Given that these research lines can also be taken to the UI level, UIGU

has to be expanded in order to remain as a valid UI generator for the Umple language.

130

7.4 Validating UIGU

UIGU was tested using the examples listed in Appendix III. However, to gather feedback,

UIGU should be tested in more complex models and by experienced software modelers.

Initially UIGU could be used as a teaching tool. This will help not only to test its concept,

but also to show students how UML concepts can be mapped to textual models and these

models can be taken to the UI level. Besides these advantages UIGU provides to students,

student exposure to UIGU would make it more possible that it will gain more research

interest and developer support in the future. Once stabilized and tested, UIGU could be

opened to the open source community to allow them to use it and contribute.

131

References

[1] P. Pinheiro da Silva and N.W. Paton, User Interface Modeling in UMLi. IEEE

software, pp. 62-69, 2003

[2] K. Stirewalt, S. Rugaber, Automating UI Generation by Model Composition. 13th

IEEE International Conference on Automated Software Engineering (ASE'98),

pp.177, 1998

[3] M. Flower, History of the evolution of MVC and derivatives. 2006

http://www.martinfowler.com/eaaDev/uiArchs.html

[4] D. Brestovansky, Exploring Textual Modeling using the Umple Language.

University of Ottawa, 2008.

http://www.site.uottawa.ca/~tcl/gradtheses/dbrestovansky/

[5] T. Howard, The Smalltalk Developers Guide To Visual Works. Cambridge University

Press, pp. 379-381, 1995

[6] H. Kilov, From semantic to object-oriented data modeling. Proceedings of the First

International Conference on Systems Integration, pp. 385-393, April 1990

[7] L, Cardelli, Typeful Programming. Digital Equipment Corporation, Systems

Research Center, pp 8-15, 1993

http://lucacardelli.name/Papers/TypefulProg.A4.pdf

[8] A.Forward, O. Badreddin, T. Lethbridge, Exploring a Model-Oriented and

Executable Syntax for UML Attributes in the Umple Language v2. University of

Ottawa, 2009

[9] A.Forward, T. Lethbridge, Improving Program Comprehension by Enhancing

Program Constructs: Ananalysis of the Umple language. University of Ottawa,

2009

[10] J. Herrignton, Code Generation in Action. Manning Publications Co, ch. 2, 2003

[11] JSP 2.0 - Java Server Pages documentation,

http://java.sun.com/products/jsp/docs.html

http://www.martinfowler.com/eaaDev/uiArchs.html
http://lucacardelli.name/Papers/TypefulProg.A4.pdf
http://java.sun.com/products/jsp/docs.html

132

[12] K. Fertalj, M. Brcic, A Source Code Generator Based on UML Specification.

International Journal Of Computers And Communications, Issue 1 vol 2, pp. 10-19,

2008

[13] A. Elbibas, M. J. Ridley, Developing Web entry forms Based on METADATA.

ICWE 04-International Conference on Web Engineering, Munich (Germany). 2004.

[14] M. A. Mgheder, M. J. Ridley, Automatic Generation of Web User Interfaces in PHP

Using Database Metadata. 3th IEEE International Conference on Internet and Web

Applications and Services, pp. 426-430, 2008

[15] A., Scott, Mapping objects to relational databases. Roning International, 2000
http://www.AmbySoft.com/mappingObjects.pdf

[16] M. A. Mgheder, M. J. Ridley, Using Database Metadata and its Semantics to

Generate Automatic and Dynamic Web Entry Forms. Proceedings of the World

Congress on Engineering and Computer Science 2007 WCECS 2007, pp. 654-658,

October 2007

[17] M. Polo, M. Piattini, F. Ruiz, Reflective Persistence (Reflective CRUD). Escuela

Superior de Informática University of Castilla-La Mancha, 2001

[18] M. J. Rettig, M. Fowler, Reflection vs. code generation, 2001

http://www.javaworld.com/javaworld/jw-11-2001/jw-1102-codegen.html

[19] W3C XPATH language specification, 2007

http://www.w3.org/TR/xpath20/

[20] S. Sarkar, C. Cleveland, Code Generation Using Xml Based Document

Transformation. theserverside.com , 2007

http://www.theserverside.com/tt/articles/content/XMLCodeGen/xmltransform.pdf

[21] S. Sarkar, Model driven programming using XSLT. XML-JOURNAL, pp. 42-51

August 2002

[22] P. Lay, S. Transforming XML Schemas into Java Swing GUIs. L¨uttringhaus-

Kappel. Institut f¨ur Informatik III, Universit¨at Bonn volume 50 of LNI

proceedings pp. 271-276, 2004

http://www.ambysoft.com/mappingObjects.pdf
http://www.javaworld.com/javaworld/jw-11-2001/jw-1102-codegen.html
http://www.w3.org/TR/xpath20/
http://www.theserverside.com/tt/articles/content/XMLCodeGen/xmltransform.pdf

133

[23] R. Popma, Introduction to JET. Azurri Ltda, Eclipse corner articles, 2007

http://www.eclipse.org/articles/Article-JET/jet_tutorial1.html

[24] ERb - Ruby, http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/classes/ERB.html

[25] HTML::Mason, http://www.masonhq.com.

[26] S. Huang, H Zhang, Research on Improved MVC Design pattern Based on Struts

and XSL. International Symposium on Information Science and Engineering, 2008

[27] V. Chopra, Beginning JavaServer Pages. Wrox Press, ch. 17, 2005

[28] Core J2EE Patterns - Data Access Object. Sun Microsystems

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html

[29] D. Matid, D. Butorac, H. Kegalj, Data Access Architecture in Object Oriented

Applications Using Design Patterns. IEEE MELECON, pp. 595-598, 2004

[30] C. Schalk, E. Burns, J. Holmes, JavaServer Faces: “The Complete Reference”.

McGraw-Hill/Osborne. 2007

[31] The Java EE 5Tutorial. Sun Microsystems. ch 10, 2007

http://java.sun.com/javaee/5/docs/tutorial/doc/JavaEETutorial.pdf

[32] Hibernate, Relational Persistence with Java and .Net,

https://www.hibernate.org/328.html

[33] Java Architecture for XML binding -JAXB-, https://jaxb.dev.java.net/

[34] JBoss RichFaces, http://www.jboss.org/richfaces

[35] Facelets, https://facelets.dev.java.net/

[36] JAR hell, http://incubator.apache.org/depot/version/jar-hell.html

[37] Apache ant, http://ant.apache.org/

[38] OMG OCL 2.2 Specification, 2010

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL

http://www.eclipse.org/articles/Article-JET/jet_tutorial1.html
http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/classes/ERB.html
http://www.masonhq.com./
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://java.sun.com/javaee/5/docs/tutorial/doc/JavaEETutorial.pdf
https://www.hibernate.org/328.html
https://jaxb.dev.java.net/
http://www.jboss.org/richfaces
https://facelets.dev.java.net/
http://incubator.apache.org/depot/version/jar-hell.html
http://ant.apache.org/
http://www.omg.org/technology/documents/modeling_spec_catalog.htm%23OCL

134

APPENDIX I

UMPLE GRAMMAR V. 1.6.3

program- : ([[comment]] | [[directive]])*

directive- : [[glossary]] | [[generate]] | [[useStatement]] |

[[namespace]] | [[entity]]

glossary : glossary { [[word]]* }

word : [singular] : [plural] ;

generate- : generate [=generate:Java|Php|Json|Yuml] ;

useStatement- : use [use] ;

namespace- : namespace [namespace] ;

entity- : [[classDefinition]] | [[interfaceDefinition]] |

[[externalDefinition]] | [[associationDefinition]] |

[[associationClassDefinition]]

classDefinition : class [name] { [[classContent]]* }

externalDefinition : external [name] { [[classContent]]* }

interfaceDefinition : interface [name] { [[depend]]* [[extraCode]]? }

associationDefinition : association [name]? { [[association]]* }

associationClassDefinition : associationClass [name] {

[[associationClassContent]]* }

separateMultiplicity : [[multiplicity]] [type,name] ;

association : [[aMultiplicity]] [=arrow:--|->|<-|><] [[aMultiplicity]] ;

aMultiplicity : [[multiplicity]] [type,name]

classContent- : [[comment]] | [[classDefinition]] | [[position]] |

[[isA]] | [[singleton]] | [[depend]] | [[codeInjection]] |

[[keyDefinition]] | [[symmetricReflexiveAssociation]] | [[stateMachine]]

| [[attribute]] | [[myAssociation]] | [[extraCode]]

associationClassContent- : [[comment]] | [[classDefinition]] | [[isA]] |

[[depend]] | [[codeInjection]] | [[keyDefinition]] |

135

[[separateMultiplicity]] [[separateMultiplicity]] | [[stateMachine]] |

[[attribute]] | [[myAssociation]] | [[extraCode]]

isA- : isA [extendsName] ;

depend- : depend [depend] ;

singleton- : [=singleton] ;

attribute : [=autounique] [name] ; | [=unique]?

[=modifier:immutable|settable|internal|defaulted|const]? ([type]

[=list:[]] [name] | [type,name>1,0]) (= [**value])? ;

symmetricReflexiveAssociation : [[multiplicity]] self [name] ;

myAssociation : [[myMultiplicity]] [=arrow:--|->|<-|><]

[[yourMultiplicity]] ;

myMultiplicity : [[multiplicity]] [name]?

yourMultiplicity : [[multiplicity]] [type,name]

multiplicity- : [=bound:*] | [lowerBound] .. [upperBound] | [bound]

keyDefinition- : [[defaultKey]] | [[key]]

defaultKey : key { }

key : key { [keyId] (, [keyId])* }

codeInjection- : [[beforeCode]] | [[afterCode]]

beforeCode : before [operationName] { [**code] }

afterCode : after [operationName] { [**code] }

extraCode- : [**extraCode]

comment- : [[inlineComment]] | [[multilineComment]]

inlineComment- : // [*inlineComment]

multilineComment- : /* [**multilineComment] */

position- : [[associationPosition]] | [[classPosition]]

classPosition : position [x] [y] [width] [height] ;

associationPosition : position.association [index] [[coordinate]]

[[coordinate]] ;

coordinate : [x] , [y]

stateMachine : [[enum]] | [name] { [[state]]* }

136

enum- : [name] { } | [name] { [stateName] (, [stateName])* }

state : [stateName] { [[stateEntity]]* }

stateEntity- : [[transition]] | [[entryOrExitAction]] | [[nestedState]] |

[[activity]]

transition : [[guard]] [event] -> [[action]]? [stateName] ; | [event]

[[guard]]? -> [[action]]? [stateName] ; | [[activity]] -> [stateName]

nestedState : [stateName] { [[stateEntity]]* }

action : / { [**actionCode] }

entryOrExitAction : [=type:entry|exit] / { [**actionCode] }

activity : do { [**activityCode] }

guard : [[**guardCode]]

137

APPENDIX II

UmpleProject.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:jxb="http://java.sun.com/xml/ns/jaxb" jxb:version="1.0">
 <xs:annotation>

 <xs:appinfo>

 <jxb:globalBindings collectionType="java.util.ArrayList"/>
 </xs:appinfo>

 </xs:annotation>

 <xs:element name="UmpleProject">
 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Properties"/>
 <xs:element ref="GenerationUnits"/>

 <xs:element ref="Files"/>

 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="UIFactory" type="xs:string" use="required"/>

 <xs:attribute name="OutputFolder" type="xs:string" use="required"/>
 <xs:attribute name="UmpleFile" type="xs:string" use="required"/>

 </xs:complexType>

 </xs:element>
 <xs:element name="Property">

 <xs:complexType>

 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="value" type="xs:string" use="required"/>

 </xs:complexType>
 </xs:element>

 <xs:element name="Properties">

 <xs:complexType>
 <xs:sequence>

 <xs:element ref="Property" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:complexType>

 </xs:element>

 <xs:element name="GenerationUnits">
 <xs:complexType>

 <xs:sequence>

 <xs:element ref="GenerationUnit" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:complexType>

 </xs:element>
 <xs:element name="GenerationUnit">

 <xs:complexType>

 <xs:attribute name="TemplateClass" type="xs:string" use="required"/>
 <xs:attribute name="TemplatePackage" type="xs:string" use="required"/>

 <xs:attribute name="ParameterType" type="xs:string" use="required"/>

 <xs:attribute name="PackagePreffix" type="xs:string" use="optional"/>
 <xs:attribute name="ClassSuffix" type="xs:string" use="optional"/>

 <xs:attribute name="OutputName" type="xs:string" use="optional"/>

 <xs:attribute name="OutputExtension" type="xs:string" use="optional"/>
 <xs:attribute name="OutputSubFolder" type="xs:string" use="optional"/>

 <xs:attribute name="AddClassNameToRoute" type="xs:string" use="optional" default="NO"/>

 </xs:complexType>
 </xs:element>

 <xs:element name="File">

 <xs:complexType>
 <xs:attribute name="InputFolder" type="xs:string" use="required"/>

 <xs:attribute name="OutputSubFolder" type="xs:string" use="required"/>

 <xs:attribute name="Name" type="xs:string" use="optional"/>

138

 </xs:complexType>

 </xs:element>

 <xs:element name="Files">
 <xs:complexType>

 <xs:sequence>

 <xs:element ref="File" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="Directory" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>
 </xs:element>

 <xs:element name="Directory">

 <xs:complexType>
 <xs:attribute name="InputFolder" type="xs:string" use="required"/>

 <xs:attribute name="OutputSubFolder" type="xs:string" use="optional"/>

 </xs:complexType>
 </xs:element>

</xs:schema>

139

APPENDIX III

Examples

School – Person Model

namespace education;

class School {

 String name;

 String address;

 String description;

 0..1 -- * Person student;

 key{name}

}

namespace human;

class Person {

 String name;

 Integer idNumber;

 key{idNumber}

}

Insurance System.

namespace insurance.core;

class InsuranceCompany{

singleton;

0..1 -- * InsurancePolicy;

}

class InsurancePolicy{

140

 String policyNumber;

 defaulted Double monthlyPremium=150.0;

 Date starDate;

 Date endDate;

 Double insuradValue;

 1 -- * Transaction;

 * -- 1 Person holder;

 key {policyNumber}

}

class Transaction {

 Integer txId;

 immutable Date date;

 key {txId}

}

class Renewal {

 Integer sequenceNumber;

 Integer renewalId;

 isA Transaction;

 key{sequenceNumber}

}

class Claim {

 Integer sequenceNumber;

 String description;

 Double amountClaimed;

 key{sequenceNumber}

}

class Person{

 Integer idNumber;

 String name;

 String address;

 Date dateOfBirth;

 key {idNumber}

}

class LifeInsurancePolicy {

 Integer lifeInsurancePolicyId;

 isA InsurancePolicy;

 * -- 1 Person insuredLife;

 * -> * Person beneficiary;

 key {lifeInsurancePolicyId;}

}

class PropertyInsurancePolicy{

141

 Integer propertyInsurancePolicyId;

 isA InsurancePolicy;

 key {propertyInsurancePolicyId}

 }

class InsuredProperty {

 Integer sequenceNumber;

 Integer yearBuilt;

 0..1 -- 1 PropertyInsurancePolicy;

 key{sequenceNumber}

}

class Building {

 isA InsuredProperty;

 String address;

 Double floorArea;

 key {address}

}

class Vehicle{

 isA InsuredProperty;

 String identificationNumber;

 String manufacturer;

 String model;

 key{identificationNumber}

}

Airline System

namespace airline;

class Airline{

 singleton;

 1 -- * RegularFlight;

 1 -- * Person;

}

class RegularFlight{

 Time time;

 Integer flightNumber;

 1 -- * SpecificFlight;

 key{flightNumber}

142

}

class SpecificFlight{

 Integer flightId;

 Date date;

 key{flightId}

}

class PassengerRole

{

 isA PersonRole;

 immutable String name ;

 1 -- * Booking;

 key{name}

}

class EmployeeRole

{

 String jobFunction;

 isA PersonRole;

 * -- 0..1 EmployeeRole supervisor;

 * -- * SpecificFlight;

 key{jobFunction}

}

class Person

{

 String name;

 Integer idNumber;

 1 -- 0..2 PersonRole;

 key{idNumber}

}

class PersonRole{}

class Booking{

 Integer sequenceNumber;

 String seatNumber;

 * Booking -- 1 SpecificFlight;

 key{sequenceNumber}

}

143

APPENDIX IV

UmpleProject.xml for the Insurance_System

<?xml version="1.0" encoding="UTF-8"?>

<!-- UMPLE PROJECT JSF PROVIDER-->
<UmpleProject UmpleFile="Insurance.ump" name="Insurance_System" UIFactory="cruise.ui.jsf.JSFFactory"

OutputFolder="InsuranceApp" xsi:noNamespaceSchemaLocation="UmpleProject.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<Properties>

 <Property name="UMPLE_FOLDER" value="JavaSource" />

 <Property name="ATTRIBUTE_CONFIGURATOR" value="xml/AttributeConfigurator.xml" />
 <Property name="GUI_ATTRIBUTE_CONFIGURATOR" value="xml/GUIConfigurator.xml" />

 <Property name="PROVIDER_JAR" value="JSFProvider.jar" />
 <!-- JSF PROVIDER Properties-->

 <Property name="BCK_OBJECT_SUFFIX" value="Bean" />

 <Property name="PACKAGE_PREFIX" value="web" />
</Properties>

<GenerationUnits>

 <GenerationUnit OutputSubFolder="JavaSource" PackagePreffix="dao" OutputExtension="java"
TemplatePackage="cruise.data.impl.dao" TemplateClass="DAOInterface" ClassSuffix="DAO"

ParameterType="NORMAL_CLASS_BY_CLASS"/>

 <GenerationUnit OutputSubFolder="JavaSource" PackagePreffix="dao.keys" OutputExtension="java"

TemplatePackage="cruise.data.impl.dao.generic" TemplateClass="KeyClass" OutputPackage="dao.keys" ClassSuffix="Key"

ParameterType="NORMAL_CLASS_BY_CLASS"/>

 <GenerationUnit OutputSubFolder="JavaSource" PackagePreffix="dao.keys" OutputExtension="java"
TemplatePackage="cruise.data.impl.dao.generic.impl" TemplateClass="IKey" OutputName="IKey" ParameterType="NONE"/>

 <GenerationUnit OutputSubFolder="JavaSource" PackagePreffix="dao.factory" OutputExtension="java"

TemplatePackage="cruise.data.impl.dao.factory" TemplateClass="DAOFactory" OutputName="DAOFactory"
ParameterType="ALL_NORMAL_CLASSES"/>

 <GenerationUnit OutputSubFolder="JavaSource" PackagePreffix="dao.factory" OutputExtension="java"

TemplatePackage="cruise.data.impl.dao.factory" TemplateClass="FakeDAOFactory" OutputName="FakeDAOFactory"
ParameterType="ALL_NORMAL_CLASSES"/>

 <GenerationUnit OutputSubFolder="JavaSource" PackagePreffix="dao.generic" OutputExtension="java"

TemplatePackage="cruise.data.impl.dao.generic" TemplateClass="GenericDAO" OutputName="GenericDAO"
ParameterType="NONE"/>

 <GenerationUnit OutputSubFolder="JavaSource" PackagePreffix="dao.generic.impl" OutputExtension="java"

TemplatePackage="cruise.data.impl.dao.generic.impl" TemplateClass="GenericFakeDAO" OutputName="GenericFakeDAO"
ParameterType="NONE"/>

 <GenerationUnit OutputSubFolder="JavaSource" PackagePreffix="dao.session" OutputExtension="java"

TemplatePackage="cruise.data.impl.dao.session" TemplateClass="ObjectRepository" OutputName="ObjectRepository"
ParameterType="ALL_NORMAL_CLASSES"/>

 <GenerationUnit OutputSubFolder="JavaSource" PackagePreffix="dao.session" OutputExtension="java"

TemplatePackage="cruise.data.impl.dao.session" TemplateClass="Session" OutputName="Session" ParameterType="NONE"/>
 <GenerationUnit OutputSubFolder="JavaSource" PackagePreffix="bundles" OutputExtension="properties"

TemplatePackage="cruise.data.impl.bundles" TemplateClass="ResourceBundle" OutputPackage="bundles"

ParameterType="NORMAL_CLASS_BY_CLASS"/>
 <GenerationUnit OutputSubFolder="JavaSource" PackagePreffix="bundles" OutputExtension="properties"

TemplatePackage="cruise.data.impl.bundles" TemplateClass="ResourceBundle" OutputPackage="bundles"

ParameterType="SINGLETON_CLASS_BY_CLASS"/>
 <!-- JSF PROVIDER GenerationUnits-->

 <!-- JSF PROVIDER Beans and Utils-->

 <GenerationUnit OutputSubFolder="JavaSource" PackagePreffix="web.components.bean" OutputExtension="java"
TemplatePackage="cruise.ui.jsf.templates.impl.components" TemplateClass="SkinBean" OutputName="SkinBean"

ParameterType="NONE"/>

 <GenerationUnit OutputSubFolder="JavaSource" PackagePreffix="web.components.bean" OutputExtension="java"
TemplatePackage="cruise.ui.jsf.templates.impl.components" TemplateClass="TimeBean" OutputName="TimeBean"

ParameterType="NONE"/>

 <GenerationUnit OutputSubFolder="JavaSource" PackagePreffix="web.control" OutputExtension="java"
TemplatePackage="cruise.ui.jsf.templates.impl.control" TemplateClass="BeanLinker" OutputName="BeanLinker"

ParameterType="NONE"/>

144

 <GenerationUnit OutputSubFolder="JavaSource" PackagePreffix="web.control" OutputExtension="java"

TemplatePackage="cruise.ui.jsf.templates.impl.control" TemplateClass="MainBean" OutputName="MainBean"

ParameterType="NONE"/>
 <GenerationUnit OutputSubFolder="JavaSource" PackagePreffix="web.utils" OutputExtension="java"

TemplatePackage="cruise.ui.jsf.templates.impl.utils" TemplateClass="PageFlowUtils" OutputName="PageFlowUtils"

ParameterType="NONE"/>
 <GenerationUnit OutputSubFolder="JavaSource" PackagePreffix="web" OutputExtension="java"

TemplatePackage="cruise.ui.jsf.templates.impl" TemplateClass="BckBean" ClassSuffix="Bean"

ParameterType="NORMAL_CLASS_BY_CLASS"/>
 <GenerationUnit OutputSubFolder="JavaSource" PackagePreffix="web" OutputExtension="java"

TemplatePackage="cruise.ui.jsf.templates.impl" TemplateClass="BckBeanSingleton" ClassSuffix="Bean"

ParameterType="SINGLETON_CLASS_BY_CLASS"/>
 <!-- JSF PROVIDER Config Files-->

 <GenerationUnit OutputSubFolder="WebContent/WEB-INF" OutputExtension="xml"

TemplatePackage="cruise.ui.jsf.templates.impl.GUI.config" TemplateClass="WebXML" OutputName="web"
ParameterType="NONE"/>

 <GenerationUnit OutputSubFolder="WebContent/WEB-INF" OutputExtension="xml"

TemplatePackage="cruise.ui.jsf.templates.impl.GUI.config" TemplateClass="FacesConfig" OutputName="faces-config"
ParameterType="ALL_CLASSES"/>

 <GenerationUnit OutputSubFolder="WebContent/pages" PackagePreffix="templates" OutputExtension="xhtml"

TemplatePackage="cruise.ui.jsf.templates.impl.GUI.templates" TemplateClass="Common" OutputName="common"
ParameterType="ALL_CLASSES"/>

<!-- JSF PROVIDER web pages Files-->

 <GenerationUnit OutputSubFolder="WebContent/pages" OutputExtension="xhtml"
TemplatePackage="cruise.ui.jsf.templates.impl.GUI" TemplateClass="Home" OutputName="home" ParameterType="NONE"/>

 <GenerationUnit OutputSubFolder="WebContent/pages" OutputExtension="xhtml"
TemplatePackage="cruise.ui.jsf.templates.impl.GUI" TemplateClass="BaseInsertable" ClassSuffix="Insertable"

AddClassNameToRoute="YES" ParameterType="NORMAL_CLASS_BY_CLASS"/>

 <GenerationUnit OutputSubFolder="WebContent/pages" OutputExtension="xhtml"
TemplatePackage="cruise.ui.jsf.templates.impl.GUI" TemplateClass="BaseMain" ClassSuffix="Main" AddClassNameToRoute="YES"

ParameterType="NORMAL_CLASS_BY_CLASS"/>

 <GenerationUnit OutputSubFolder="WebContent/pages" OutputExtension="xhtml"
TemplatePackage="cruise.ui.jsf.templates.impl.GUI" TemplateClass="Grid" OutputName="grid" AddClassNameToRoute="YES"

ParameterType="NORMAL_CLASS_BY_CLASS"/>

 <GenerationUnit OutputSubFolder="WebContent/pages" OutputExtension="xhtml"
TemplatePackage="cruise.ui.jsf.templates.impl.GUI" TemplateClass="GridSelectMany" OutputName="gridSelectMany"

AddClassNameToRoute="YES" ParameterType="NORMAL_CLASS_BY_CLASS"/>

 <GenerationUnit OutputSubFolder="WebContent/pages" OutputExtension="xhtml"
TemplatePackage="cruise.ui.jsf.templates.impl.GUI" TemplateClass="GridSelectOne" OutputName="gridSelectOne"

AddClassNameToRoute="YES" ParameterType="NORMAL_CLASS_BY_CLASS"/>
 <GenerationUnit OutputSubFolder="WebContent/pages" OutputExtension="xhtml"

TemplatePackage="cruise.ui.jsf.templates.impl.GUI" TemplateClass="BaseInsertableSingleton" ClassSuffix="Insertable"

AddClassNameToRoute="YES" ParameterType="SINGLETON_CLASS_BY_CLASS"/>
 <GenerationUnit OutputSubFolder="WebContent/pages" OutputExtension="xhtml"

TemplatePackage="cruise.ui.jsf.templates.impl.GUI" TemplateClass="BaseMain" ClassSuffix="Main" AddClassNameToRoute="YES"

ParameterType="SINGLETON_CLASS_BY_CLASS"/>
</GenerationUnits>

<Files>

 <Directory InputFolder="files/compile-libs" OutputSubFolder="compile-libs" />
 <Directory InputFolder="files/images" OutputSubFolder="WebContent/images" />

 <Directory InputFolder="files/lib" OutputSubFolder="WebContent/WEB-INF/lib" />

 <!-- Use the following tag if your target server is Tomcat, commented it out if you are going to deploy the app in jboss-->
 <Directory InputFolder="files/tomcat-libs" OutputSubFolder="WebContent/WEB-INF/lib" />

 <Directory InputFolder="files/META-INF" OutputSubFolder="WebContent/META-INF" />

 <File InputFolder="files" OutputSubFolder="WebContent" Name="index.jsp" />
</Files>

</UmpleProject>

